共查询到19条相似文献,搜索用时 62 毫秒
1.
针对支持向量机(SVM)的惩罚因子和核函数参数选取难度较大的问题,提出利用改进的人工蜂群算法优化支持向量机相关参数的方法.为了提高ABC算法的寻优能力,在原始ABC算法的搜索公式中引入全局搜索因子.利用UCI数据集对优化后的模型进行验证,证明了其良好的性能.将其应用于船舶压载水系统的故障诊断,实验结果表明,IABC算法... 相似文献
2.
人工蜂群算法优化支持向量机的分类研究 总被引:1,自引:0,他引:1
为了提高支持向量机分类准确率,采用人工蜂群算法对支持向量机参数进行优化,并将该优化方法应用于小麦完好粒、霉变粒和发芽粒三类麦粒的识别。使用小波变换分解信号能量作为特征向量,以分类错误率的倒数作为适应度函数,利用人工蜂群算法对支持向量机的惩罚因子和核函数宽度参数进行优化,优化SVM方法对小麦完好粒、霉变粒和发芽粒的分类正确率达到86%以上。实验结果表明,该研究有较强的实用价值,为SVM性能优化提供了一种新的方法。 相似文献
3.
基于混沌优化算法的支持向量机参数选取方法 总被引:31,自引:0,他引:31
支持向量机(SVM)的参数取值决定了其学习性能和泛化能力.对此,将SVM参数的选取看作参数的组合优化,建立组合优化的目标函数,采用变尺度混沌优化算法来搜索最优目标函数值.混沌优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌优化算法是选取SVM参数的有效方法,应用到函数逼近时具有优良的性能. 相似文献
4.
5.
《计算机应用与软件》2017,(1)
针对基于传统的参数优化算法在优化过程中会不同程度地陷入局部最优解的问题,在人工蜂群ABC(Artificial Bee Colony)算法的基础上提出基于交叉突变人工蜂群CMABC(Crossover Mutation ABC)算法的支持向量机SVM参数优化方法,并将其应用于入侵检测。通过引入交叉突变算子对人工蜂群算法进行改进,根据适应度值的优劣将蜂群进行划分,有效地避免了陷入局部最优,提高了收敛速度。利用标准测试函数验证了算法的有效性,并采用NSL-KDD入侵检测数据集进行仿真实验,验证了该方法的有效性。实验结果表明,该方法能有效提高入侵检测的分类性能。 相似文献
6.
混沌粒子群算法对支持向量机模型参数的优化 总被引:4,自引:1,他引:4
研究支持向量机模型优化问题,支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量很多,在多个参数中进和盲目搜索最优参数是需要极大的时间代价,并且很难得到最优参数.常用的支持向量机优化方法有遗传算法、粒子群算法都存在易陷入局部极值,优化效果较差.为解决支持向量机参数寻优问题,提出一种基于混沌粒子群的支持向量机参数选择方法.将混沌理论引入粒子群优化算法中,从而提高种群的多样性和粒子搜索的遍历性,从而有效地提高了PSO算法的收敛速度和精度,得了优化支持向量机模型.并以信用卡案例数据作为研究对象进行了仿真,实验结果表明,混沌粒子群优化的SVM分类器比传统算法优化的SVM分类器的精度高和更高的效率,应用效果好. 相似文献
7.
基于混沌灰狼优化算法的SVM分类器研究 总被引:1,自引:0,他引:1
支持向量机(SVM)是在分类问题下建立的一个运算小型数据集,可实现非线性高纬度分类,有很好的扩展能力。但是,在传统SVM的训练过程中,SVM运算结果的好坏与参数选择关系密切,而且目前使用的参数选择算法有很多缺陷。因此,针对上述问题,在灰狼算法(GWO)中加入混沌序列,改变狼群初始分布规律,构建混沌灰狼优化算法(CGWO),增强狼群分布均匀性以及狼群查找遍历性,极大提高GWO算法的运算速度和运算准确性,最终更好地优化SVM。使用Mirjalili提供的开源数据与原有数据混合作为向量机的测试集进行实验对比分析,实验结果表明,CGWO算法具有明显的性能提高;用混沌灰狼算法优化的 SVM和灰狼优化算法SVM、人工蜂群SVM、万有引力搜索SVM以及传统算法优化的 SVM相比,其运算准确率更高、误差更低、花费时间更少。 相似文献
8.
针对支持向量机的参数寻优缺乏数学理论指导,传统人工蜂群算法易陷入长期停滞的不足,而混沌搜索算法具有很好的随机性和遍历性,提出了基于混沌更新策略人工蜂群支持向量机参数选择模型(IABC-SVM)。该模型利用混沌搜索对侦察蜂搜索方式进行改进,有效提高蜂群算法搜索效率。以UCI标准数据库中的数据进行数值实验,采用ACO-SVM、PSO-SVM、ABC-SVM作为对比模型,实验表明了IABC在SVM参数优化中的可行性和有效性,具有较高的预测准确率和较好的算法稳定性。 相似文献
9.
支持向量机在高维度、小样本情况下具有独特优势,但同时支持向量机的参数优化极大制约了其分类效果,目前参数优化缺乏系统的理论指导;针对传统DAG-SVM训练分类器较多,训练耗时长,分类效果受到结构排序的影响,提出了一种基于“1 vs R”策略的改进型算法;针对 SVM传统参数优化方式耗时大,优化精度不高,提出了改进型人工鱼群算法;最后结合1 vs R-DAG支持向量机算法与改进型人工鱼群算法,得到一种新的改进型支持向量机算法;仿真对比实验证实,对支持向量机的参数优化是有效可行的。 相似文献
10.
11.
基于RBF核的支持向量机(SVM)模型选择取决于两个参数,即惩罚因子和核参数,为了寻找SVM参数的最优组合,利于笔迹鉴别图像的自动识别,提出了基于混沌序列的参数搜索算法以实现SVM模型参数的自动选择。从与网格法和双线性法进行的比较实验可以看出,基于混沌序列的SVM参数选取更简单,更易于实现,并使SVM具有更好的推广能力。在10人笔迹灰度图像库上分类识别实验结果表明,该方法不但可以提高分类识别率,而且显著减少了训练SVM的个数。 相似文献
12.
支持向量机回归的参数选择方法 总被引:8,自引:3,他引:5
综合4种支持向量机回归的参数选择方法的优点,提出一种对训练样本进行分析并直接确定参数的方法。在标准测试数据集上的试验证明,该方法与传统网格搜索法相比,在时间和预测精度方面取得了更好的结果,可以较好地解决支持向量机在实际应用中参数难以选择、消耗时间长的问题。 相似文献
13.
针对支持向量机中混合核函数参数的选取还没有一套完整的理论支撑,提出基于蚁群算法和循环交叉验证法的参数优选方法。以平均加权误差作为不同参数下支持向量机预测效果的评价指标,采用循环交叉验证法计算平均加权误差。采用蚁群算法来提高混合核函数参数优化效率,减少计算工作量。通过在某型飞机机体研制费用预测中的应用,显示基于最优参数下混合核函数的支持向量机的预测误差最小,表明该参数优选方法能够提高预测精度。 相似文献
14.
支持向量机中参数设置对训练支持向量机分类的精确度有不可忽视的影响。支持向量机参数的选取可看作参数的组合优化。免疫算法是一种有效的随机全局优化技术,它具有不易陷入局部最优解、解精度高、收敛速度快等优点。该文利用人工免疫算法进行支持向量机模型选择。该算法主要包括克隆选择、高频变异、受体编辑等操作。试验证明,该算法能够有效提高支持向量机分类的正确性。 相似文献
15.
在无向加权图上进行距离检索和对象查询是使用无向加权图的重要工作,也是解决实际问题的重要步骤。该文提出一种基于距离签名的处理方法来实现距离检索和查询,通过距离分级、签名编码和压缩等,实现了检索和查询的高效率,减少了存储空间。描述了建模及处理KNN查询的过程,实验证明了该方法的有效性。 相似文献
16.
17.
18.
特征子集选择和训练参数的优化一直是SVM研究中的两个重要方面,选择合适的特征和合理的训练参数可以提高SVM分类器的性能,以往的研究是将两个问题分别进行解决。随着遗传优化等自然计算技术在人工智能领域的应用,开始出现特征选择及参数的同时优化研究。研究采用免疫遗传算法(IGA)对特征选择及SVM 参数的同时优化,提出了一种IGA-SVM 算法。实验表明,该方法可找出合适的特征子集及SVM 参数,并取得较好的分类效果,证明算法的有效性。 相似文献
19.
十折交叉检验的支持向量机参数优化算法 总被引:3,自引:0,他引:3
针对支持向量机结构参数的选取在没有理论支持,选取又比较困难的情况下,提出了一种基于遗传算法和十折交叉检验相结合的遗传支持向量机(GA-SVM)算法,利用遗传算法的全局搜索特性得到SVM的最优参数值,有效提高了分类的精度和效率。 相似文献