首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
石英晶体振荡器因其具有频率稳定度高的特点,作为标准频率源或脉冲信号源提供频率基准是目前其它类型的振荡器所不能替代的.而加速度对晶振输出频率影响的补偿问题目前还没有得到很好解决,加速度已成为当前影响晶体振荡器准确度的重要因素.本文简要介绍了加速度对晶体频率的影响,国内外加速度敏感度的测试方法及其改进方法,并以实验验证,取得了较好的效果.  相似文献   

2.
Through the use of N series-connected quartz crystal resonators in an oscillator circuit, a 10 log N reduction in both flicker-of-frequency noise and white phase-noise (floor) levels has been demonstrated. The reduction in flicker noise occurs as a result of the uncorrelated short-term frequency instability in each of the resonators, and the reduction in noise floor level is a simple result of the increase in net, allowable crystal drive level. This technique has been used in 40-, 80-, and 100-MHz AT-, BT-, and SC-cut crystal oscillators using low flicker-of-phase noise modular amplifier sustaining stages, and four series connected crystals. Total (four crystal) power dissipations of up to 30 mW have been utilized. State-of-the-art, flicker-of-frequency noise levels have been obtained with noise-floor levels (80 MHz) as low as -180 dBc/Hz. Four- to five-fold reduction in acceleration sensitivities has been determined  相似文献   

3.
The Navy Navigation Satellite System (NNSS) uses precision quartz crystal oscillators to provide time and frequency in the orbiting spacecraft. The frequency changes for multiple oscillators, which were observed for 28 years of operational service in the orbital environment, are discussed. The primary frequency changes are believed to be caused by mass transfer to and from the resonator, stress relief in the resonator mounting structure and electrodes, and ionizing radiation of the quartz resonator. Observations to a resolution of 10- 13 have been made from 1963 to 1991 on 20 operational satellites in near-Earth orbit. No oscillator failures have occurred during the entire program life of nearly 30 years. One oscillator provided continuous operational service for over 21 years, and several have served more than 15 years. No oscillator changed frequency more than two parts in 107 while in operational service. One of the best performing oscillators had a predictable drift rate of 9x10(-13)+/-1x10(-13) per day after three years of service.  相似文献   

4.
A new approach is described for the desiga of HF/VHF crystal-controlled frequency sources exhibiting theoretical short-term stability unattainable through the use of conventional quartz oscillator design. The signal generator design uses the concept of AFC stabilization of a conventional quartz oscillator (VCXO) by means of a crystal-controlled highly selective active frequency reference. The AFC reference is a phase-shift type frequency discriminator that employs a product detector and an active Q-multiplied quartz crystal resonator. The extremely selective transmission response, large group delay, and power gain exhibited by the resonator, together with resonator phase noise levels comparable to that exhibited by the oscillator-maintaining circuit, provide the principal means for prediction of superior output signal spectral purity. Models of the resonators have been designed and constructed at 30 and 80 MHz, exhibiting 3-dB bandwidths of 30 and 160 Hz, respectively. Based on actual measurement of VHF Q-multiplied crystal resonator performance characteristics, approximately 16 dB improvement in VHF crystal-controlled frequency source spectral purity at low and moderate modulation rates is possible, compared to that attainable using the best available VHF quartz oscillator circuit designs.  相似文献   

5.
Oscillator-based measurements with quartz crystal resonators are analyzed. The investigations have shown that classical thickness monitors as well as many chemical vapor sensors based on a quartz crystal microbalance (QCM) work properly, even with simple oscillators. It was demonstrated that, for applications in a liquid environment, more sophisticated electronics are necessary. Also a comparison between the experimental results in liquids and the theoretical predictions is hardly possible without the knowledge of the oscillator behavior. As our solution, we present an automatic gain-controlled oscillator with two output signals, the oscillator frequency, and a signal that represents the damping of the quartz resonator. A calibration method is introduced, which allows one to calculate the series resonance frequency f/sub s/ and the series resistance R/sub s/ from these oscillator signals.  相似文献   

6.
In this work, our goal is to develop a voltage-controlled variable-frequency quartz crystal oscillator with narrowband response, wide, variable frequency range and the capacity to oscillate across the series resonance frequency using a four-segment configuration of a quartz crystal oscillator. In conventional quartz oscillators, the quartz resonator is inserted in the feedback loop between the input and the output of the active circuit, providing sufficient gain and the phase relation. In the oscillator developed here, the quartz crystal resonator is inserted between the loop circuit and the ground potential. The performance of the voltage-controlled variable-frequency oscillator is demonstrated across the series resonance frequency.  相似文献   

7.
A simplified model of the transistor sustaining stage employed in common quartz-crystal oscillators is presented. Examination of the model, including associated noise sources, provides an explanation for general differences observed in the output-frequency spectra of several types of widely used self-limiting crystal oscillator circuits. A self-limiting quartz-crystal oscillator circuit configuration is described that has been specifically designed to exhibit simultaneously each of the three important circuit characteristics necessary for improved oscillator short-term frequency/phase stability: large value of oscillator resonator loaded Q, adequate suppression of 1/f flicker-of-phase type noise, and improvement in oscillator ultimate signal-to-noise ratio. Several models of the oscillator circuit have been constructed employing high quality third overtone 5-MHz AT- and BT-cut quartz resonators. Measurement of oscillator short-term frequency stability using conventional phase lock and sampling techniques confirm attainment of substantial improvement in oscillator short-term frequency stability when compared to conventional self-limiting oscillator circuits.  相似文献   

8.
A positive feedback system oscillating under self-sustained mode is shown to have an extremely high gain. Modeled as one port, the expected Q is much higher than the loaded Q-factor of the resonator. With just thermal noise present, random phase/frequency deviation is linear. Centered about the oscillator frequency omega/(0), noise frequency on both sides is more amplified with decreasing separation distance. Ultimately, frequency pulling may result in synchronous locking with hysteresis, which occurs because a real oscillator displays a truncated limiting curve. Once locked onto a signal, smaller levels are ignored. A new approach to the design and characterization of a simple tuned oscillator is offered: According to the phenomenon of injection locking, there exists an expected quality factor relating the shape of the truncated limiting curve to an ideal curve. In this paper, synthesis and innovative analytical methods of academic interest are revealed: 1) application of the transducer loss method is revised to establish a new method for oscillator characterization; 2) a transparent method of normalizing a two-port network in the presence of white noise is developed; and 3) in quartz crystal controlled oscillators, characterization of the noise originating from an equivalent noise-resistance determined from parameter of the quartz crystal is proposed. It is shown that the two-port model can also be approximated on a one-port basis. In conclusion, a sample of closed-form estimation of expected Q-factor order of magnitude of piezoelectric resonator oscillators is calculated.  相似文献   

9.
In this work, we present a variable-frequency quartz crystal oscillator that is able to oscillate at LC resonance under frequency locking of a quartz crystal resonance, with the frequency tuning realized by variable-capacitance diodes. This circuit shows a steep transition between LC oscillation modes to quartz crystal double-resonance, which shows a characteristic change in the oscillation frequency. Control voltage of this diode is precisely adjusted from the low side to higher values and conversely in the vicinity of the oscillation mode transition. The transition of the oscillation modes is experimentally demonstrated and compared with an algebraic analysis.  相似文献   

10.
Parametric oscillators have been well studied but currently are not used often. Nevertheless, they could be a low-phase noise solution, at least outside the frequency bandwidth of the resonant circuit. The theoretical aspect of parametric oscillations is briefly reviewed in this paper. Indeed, the basic theory of a simple resistance-inductor-capacitor (RLC) circuit working in parametric conditions easily can be extended toward a resonant loop that includes a quartz crystal resonator. Then, as an application, this study is transposed to a quartz crystal oscillator that has been modeled and tested as a first prototype. Simulation results are compared with those actually obtained.  相似文献   

11.
This paper gives an analysis of a modified Pierce oscillator for frequency variation due to changes in the circuit or transistor. The magnitudes of the frequency shifts due to parameter changes are computed in relation to each other. The analysis has been verified by testing the oscillator circuit with several transistors which had significantly different measured parameters. Computed frequency shifts were compared with measured frequency shifts. The agreement between experimental and calculated data is ?8×10-9 with a 5 Mc, fifth overtone quartz crystal in the circuit. A general equation relating frequency changes to changes in circuit parameters has been derived and is applicable to any operating frequency as long as the y parameters of the transistor and the circuit elements of the oscillator are known.  相似文献   

12.
The intrinsic noise of the best quartz crystal resonators is significantly less than the noise observed in oscillators employing these resonators Several problem areas common to traditional designs are pointed out and a new approach is suggested for their solution. Two circuits are described which frequency lock a spectrally pure quartz crystal oscillator to an independent quartz crystal resonator. The performance of the composite system is predicted based on the measured performance of its components.  相似文献   

13.
In this paper, a novel microcomputer temperature-compensating method for an overtone crystal oscillator (MCOXO) is presented. In this method, a ceramic oscillator is chosen, and its output frequency is mixed with the output frequency of an overtone crystal oscillator. A crystal filter is used to suppress the spurious mixing products. A microcomputer is used to control the switch capacitance array that is connected to the ceramic oscillator circuit. The frequency deviation of the crystal oscillator is directly compensated by the output frequency of the ceramic oscillator. As a result, the method is able to overcome the disadvantages of frequency stability degradation and phase noise deterioration that are provoked by adding inductance or frequency multiplication in traditional compensating approaches. At the same time, this method is able to compensate a quite wide frequency range and many types of oscillators, not just crystal oscillators. The experimental compensating results show that, using this method, the frequency-temperature stability of a 100 MHz 5th overtone temperature-compensated crystal oscillator can achieve /spl les/ /spl plusmn/2/spl times/10/sup -6/ for 0-70/spl deg/C.  相似文献   

14.
In order to predict the phase noise in crystal oscillators an enhanced phase-noise model has been built. With this model, the power spectral densities of phase fluctuations can be computed in different points of the oscillator loop. They are calculated from their correlation functions. The resonator-caused noise as well as the amplifier-caused noise are taken into account and distinguished. To validate this enhanced model, the behavior of a batch of 10 MHz quartz crystal oscillators is observed and analyzed. The tested batch has been chosen in a facility production. Their associated resonators have been selected according to the value of their resonant frequency and their motional resistance. Open-loop and closed-loop measurements are given. The phase noise of the overall oscillator working in closed loop is provided by the usual active method. Theoretical and experimental results are compared and discussed.  相似文献   

15.
The latest development of a simulation program designed for quartz crystal oscillator analysis is presented in this paper. The simulator being developed uses the full nonlinear Barkhausen criterion method. It consists of finding the frequency ω0 and the amplitude u0 which nullify both the real and imaginary parts of a characteristic complex polynomial P(u,jω) describing the oscillator behavior. Most of the nonlinearities come from the amplifying transistor described by using large signal admittance parameters y(u) obtained by means of an analog circuit simulator (SPICE). This paper presents the method used to derive and code the characteristic polynomial coefficients. This method has been successfully implemented for a Colpitts oscillator and is currently being used to build an oscillator library covering the most widely used structures. The validity and the predictive power of the model have been checked experimentally and the comparison between experimental results and simulation is presented and discussed  相似文献   

16.
We investigated the nonlinear vibrations of the coupled thickness-shear and flexural modes of quartz crystal plates with the nonlinear Mindlin plate equations, taking into consideration the kinematic and material nonlinearities. The nonlinear Mindlin plate equations for strongly coupled thickness- shear and flexural modes have been established by following Mindlin with the nonlinear constitutive relations and approximation procedures. Based on the long thickness-shear wave approximation and aided by corresponding linear solutions, the nonlinear equation of thickness-shear vibrations of quartz crystal plate has been solved by the combination of the Galerkin and homotopy analysis methods. The amplitude frequency relation we obtained showed that the nonlinear frequency of thickness-shear vibrations depends on the vibration amplitude, thickness, and length of plate, which is significantly different from the linear case. Numerical results from this study also indicated that neither kinematic nor material nonlinearities are the main factors in frequency shifts and performance fluctuation of the quartz crystal resonators we have observed. These efforts will result in applicable solution techniques for further studies of nonlinear effects of quartz plates under bias fields for the precise analysis and design of quartz crystal resonators.  相似文献   

17.
The literature on the frequency versus temperature characteristics of quartz crystal resonators is reviewed. Three papers that deal with frequency versus pressure hysteresis are included, as these may possibly have relevance to frequency versus temperature hysteresis. It is seen that the causes of hysteresis are not well understood. The evidence to date is inconclusive. The mechanisms that can cause hysteresis include: strain changes changes in the quartz, contamination redistribution, oscillator circuitry hysteresis, and apparent hysteresis due to thermal gradients. The results to date seem to indicate that lattice defects are somehow related to thermal hysteresis. Stress relief in the mounting structure can also produce significant hysteresis. As crystal processing techniques have improved. contamination has become less of a problem.  相似文献   

18.
This paper offers a history of a critical episode in military and electronics history-the difficult creation of quartz crystal frequency control units for radio communications during World War II. As a means of controlling the frequencies of radio transmitters and receivers, amateur radio hobbyists quickly accepted the quartz crystal oscillator after its initial development in the late 1920s. The military, however, declined to adopt this technology until just prior to World War II. Due to the small market for crystal oscillators, no mass production industry had ever developed to produce this extremely high precision electronic component. As war engulfed the nation, the U.S. Army Signal Corps found itself in the dangerous position of having gambled the integrity of its communications equipment on a component that could not possibly be produced in the quantities immediately needed. This paper looks at the challenges the United States faced in building a crystal manufacturing capability and in supplying this industry with sufficient supplies of raw quartz. A fairly specialized component of communications technology emerged from spare beginnings in prewar amateur radio to become the very foundation of a wide range of electronic devices today.  相似文献   

19.
NS-GT cut quartz crystal resonators are widely used as a frequency standard element in consumer products and communication equipment. The vibration mode of the resonators was analyzed by the finite element method (FEM) because they have a complicated shape. As a result, an asymmetrical vibration mode at the main resonant frequency has been obtained by the FEM simulation. But, it is necessary to confirm the asymmetrical vibration mode experimentally because it is just a simulation. In this paper, stress distributions of the NS-GT cut quartz crystal resonators are measured experimentally by using a dynamic photo-elastic method when the resonators are vibrating in the resonant frequency; thereafter, vibration modes of the NS-GT cut resonators are estimated with the experimental data of the stress distributions. This experiment for the NS-GT cut quartz crystal resonators exposes the existence of a twisted asymmetrical vibration mode at the main resonant frequency, with the magnitude of the twisted vibration in proportion to thickness of the resonators  相似文献   

20.
Viewing the frequency history of the high-quality quartz crystal oscillator onboard Milstar FLT-1 as a "space experiment," we have examined the response of the crystal to various solar flares that have occurred over the past 4 years. Our results show that, even for the largest solar flares that can be expected, timekeeping onboard a geosynchronous communications satellite need not be unduly perturbed by the enhanced space-radiation environment of a solar flare, so long as the ground station can take mitigating action within a few hours of the flare's onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号