共查询到10条相似文献,搜索用时 78 毫秒
1.
BiFeO3多铁性低维纳米结构(如纳米晶、纳米线、纳米管、纳米岛等)因其出色的室温多铁性能以及纳尺度下的新型尺寸效应特性,在新型多态存储器及自旋电子学器件方面受到广泛关注。近年来,人们在BiFeO3多铁性低维纳米结构的制备与表征(电、磁性能以及微结构)方面取得了相当进展,本文对此进行了评述。首先,对高质量的BiFeO3多铁性低维纳米结构的制备方法进行了简短评述,然后介绍了BiFeO3多铁性低维纳米结构的纳尺度电性能与磁性能表征以及磁电耦合效应。最后,综述了BiFeO3多铁性低维纳米结构的微结构研究进展以及BiFeO3多铁性低维纳米结构的理论研究结果,并指出了未来BiFeO3多铁性低维纳米结构研究需要重点解决的一些问题。 相似文献
2.
采用固相反应法制备了Y_2O_3和Cr_2O_3共掺杂BiFeO3陶瓷,研究了Bi_(0.9)Y_(0.1)Fe_(1–x)Cr_xO_3(BYFC_x,x=0,0.002,0.004,0.006,0.008)陶瓷的多铁性能。XRD分析表明,经850℃烧结的BYFC_x陶瓷形成了三方钙钛矿结构固溶体。随着Cr掺杂量增加,BYFC_x陶瓷在室温下的铁磁性能和铁电性能提高明显。当x为0.004时,所制陶瓷的铁磁性能最好,剩余磁化强度Mr为0.23A·m~2/kg,饱和磁化强度Ms为3.15A·m~2/kg,矫顽力Hc为2.3kA/m。Mr、Ms和Hc随着Cr掺杂量的增加先增大后减小。 相似文献
3.
4.
5.
采用传统的固相烧结工艺制备3种不同摩尔比的(1-x)BiFeO3-xCoFe2O4(简称(1-x)BFO-xCFO,x为摩尔分数,且x=0.1,0.3,0.5)复合陶瓷样品,并分析了其在室温和变温下的介电性能。研究结果表明,室温下陶瓷样品的介电常数和介电损耗均随CFO含量的增加而降低;当频率大于100kHz时,样品的介电常数随CFO含量的增加而变化不大;当x(CFO)=0.1时,样品在高频时介电损耗变小,而当x(CFO)=0.3或0.5时,陶瓷样品的介电损耗明显大于纯BFO陶瓷的介电损耗。在高温情况下,由于CFO的添加使陶瓷样品存在更多的缺陷活化及CFO所造成的漏电流,使样品在低频时的介电常数与介电损耗都变得很大。在100kHz频率下的交流导电率均随着温度的增加而减少;且相同温度下样品中包含的CFO含量越大其交流导电率也越大。当x(CFO)=0.3和0.5时,复合陶瓷样品的交流导电率随温度的变化规律几乎相同,且它们在相同温度下的交流导电率比纯BFO的大5~6个数量级。 相似文献
6.
采用溶胶-凝胶结合模板的方法制备得到La掺杂BiFeO3(Bi0.94La0.06FeO3(BLF))多铁纳米管,运用X射线衍射仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM和HRTEM)以及多功能铁电测试仪对样品进行了形貌表征和铁电性能测试。结果显示:纳米管的外壁光滑,排列有序,外径约为200nm;高分辨透射电子显微镜的测试结果证明BLF纳米管是多晶钙钛矿结构;在测试电压为2 000V时,BLF纳米管剩余极化值Pr达到36.6μC/cm2,矫顽电场Ec为129kV/cm;测试电场为±100kV/cm时,漏电流密度为分别为1.44×10-3和1.63×10-3A/cm2。 相似文献
7.
8.
9.
采用sol-gel法在FTO/玻璃底电极上制备了BiFeO3/Bi4Ti3O12多层薄膜。研究了室温下薄膜的结构,铁电和漏电流性质。结果表明,相对于纯的BiFeO3薄膜,BiFeO3/Bi4Ti3O12多层薄膜具有更低的漏电流,表现出较强的铁电性,在4.40×105V/cm的测试电场强度下,剩余极化强度为3.7×10–5C/cm2。在2.00×105V/cm的测试电场强度下,BiFeO3和BiFeO3/Bi4Ti3O12薄膜的漏电流密度分别为10–5和10–7A/cm2。 相似文献
10.
外延BiFeO3薄膜中丰富的结构与特殊的性能一直是近年来研究的热点.显微结构的研究不仅可以帮助人们进一步认识BiFeO3的结构信息,还可以帮助人们深入了解BiFeO3结构与性能间的关系,开拓新的应用领域.本文利用球差校正高分辨透射电子显微镜对外延在LaAlO3过渡层/Si基底上的BiFeO3薄膜进行研究.通过原子尺度的定量分析,在应力状态复杂区域观察到类菱方相、应力释放后恢复的菱方相以及拉应力状态下c/a值小于1的类菱方相,并在该区域观察到109°铁电畴,且畴间存在4.4°的畸变夹角.还观察到比较大的c/a比. 相似文献