首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent and conducting zirconium-doped zinc oxide films have been prepared by radio frequency magnetron sputtering at room temperature. The ZrO2 content in the target is varied from 0 to 10 wt.%. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c axis. As the ZrO2 content increases, the crystallinity and conductivity of the film are initially improved and then both show deterioration. Zr atoms mainly substitute Zn atoms when the ZrO2 content are 3 and 5 wt.%, but tend to cluster into grain boundaries at higher contents. The lowest resistivity achieved is 2.07 × 10− 3 Ω cm with the ZrO2 content of 5 wt.% with a Hall mobility of 16 cm2 V− 1 s− 1 and a carrier concentration of 1.95 × 1020 cm− 3. All the films present a high transmittance of above 90% in the visible range. The optical band gap depends on the carrier concentration, and the value is larger at higher carrier concentration.  相似文献   

2.
The relationship between two techniques developed for improving the resistivity distribution on the substrate surface in transparent conducting Al-doped ZnO (AZO) thin films prepared at a temperature of 200 °C by dc magnetron sputtering depositions (dc-MSD) using various sintered AZO targets has been investigated. One improvement method superimposes an rf component onto the dc-MSD (rf + dc-MSD). The other improvement method uses conventional dc-MSD with a low resistivity AZO target prepared under optimized conditions. An improvement of resistivity distribution resulted from a decrease in the resistivity of targets used in the preparation of AZO thin films by dc-MSD either with or without superimposing rf power. However, the resistivity distribution of AZO thin films resulting from depositions using rf-superimposed dc-MSD with lower-resistivity targets was not significantly improved over that of AZO thin films prepared by conventional dc-MSD using targets with the same low resistivities. The use of rf superimposition only resulted in improved resistivity distribution in thin films when the AZO targets had a resistivity higher than around 1 × 10− 3 Ω cm. It should be noted that sintered AZO targets optimized for the preparation of AZO thin films with lower resistivity as well as more uniform resistivity distribution on the substrate surface tended to exhibit a lower resistivity.  相似文献   

3.
Al-doped zinc oxide (AZO) thin films were deposited onto flexible polyethylene terephthalate substrates, using the radio frequency (RF) magnetron sputtering process, with an AZO ceramic target (The Al2O3 content was about 2 wt.%). The effects of the argon sputtering pressure (in the range from 0.66 to 2.0 Pa), thickness of the Al buffer layer (thickness of 2, 5, and 10 nm) and annealing in a vacuum (6.6 × 10− 4 Pa), for 30 min at 120 °C, on the morphology and optoelectronic performances of AZO films were investigated. The resistivity was 9.22 × 10− 3 Ω cm, carrier concentration was 4.64 × 1021 cm− 3, Hall mobility was 2.68 cm2/V s and visible range transmittance was about 80%, at an argon sputtering pressure of 2.0 Pa and an RF power of 100 W. Using an Al buffer decreases the resistivity and optical transmittance of the AZO films. The crystalline and microstructure characteristics of the AZO films are improved by annealing.  相似文献   

4.
Ga doped ZnO(GZO)/Cu/GZO multilayers were deposited by magnetron sputtering on polycarbonate substrates at room temperature. We investigated the structural, electrical, and optical properties of multilayers at various thicknesses of Cu and GZO layers. The lowest resistivity value of 3.3 × 10− 5 Ω cm with a carrier concentration of 2.9 × 1022 cm− 3 was obtained at the optimum Cu (10 nm) and GZO (10 nm) layer thickness. The highest value of figure of merit φTC is 2.68 × 10− 3 Ω− 1 for the GZO (10 nm)/Cu(10 nm)/GZO(10 nm) multilayer. The highest average near infrared reflectivity in the wavelength range 1000-2500 nm is as high as 70% for the GZO(10 nm)/Cu(10 nm)/GZO(10 nm) multilayer.  相似文献   

5.
For the purpose of using transparent conducting impurity-doped ZnO thin films in liquid crystal display (LCD) applications, the relationship between the properties of dc magnetron sputtering (dc-MS) deposited thin films and the properties of the oxide targets used to produce them is investigated. Both Al-doped and Ga-doped ZnO (AZO and GZO) thin films were deposited on glass substrates using a dc-MS apparatus with various high-density sintered AZO or GZO disk targets (diameter of about 150 mm); the target and substrate were both fixed during the depositions. Using targets with a lower resistivity results in attaining more highly stable dc-MS depositions with higher deposition rates and lower arcing. In addition, dc-MS depositions using targets with a lower resistivity produced improvements in resistivity distribution on the substrate surface. It was found that the oxygen content in deposited thin films decreased as the oxygen content of the target used in the deposition was decreased. As a result, the dc-MS deposition of transparent conducting impurity-doped ZnO thin films suitable for LCD applications requires the preparation of significantly reduced AZO and GZO targets with low oxygen content.  相似文献   

6.
Jung-Min Kim 《Thin solid films》2010,518(20):5860-1267
100 nm Al-doped ZnO (AZO) thin films were deposited on polyethylene naphthalate (PEN) substrates with radio frequency magnetron sputtering using 2 wt.% Al-doped ZnO target at various deposition conditions including sputtering power, target to substrate distance, working pressure and substrate temperature. When the sputtering power, target to substrate distance and working pressure were decreased, the resistivity was decreased due to the improvement of crystallinity with larger grain size. As the substrate temperature was increased from 25 to 120 °C, AZO films showed lower electrical resistivity and better optical transmittance due to the significant improvement of the crystallinity. 2 wt.% Al-doped ZnO films deposited on glass and PEN substrates at sputtering power of 25 W, target to substrate distance of 6.8 cm, working pressure of 0.4 Pa and substrate temperature of 120 °C showed the lowest resistivity (5.12 × 10− 3 Ω cm on PEN substrate, 3.85 × 10− 3 Ω cm on glass substrate) and high average transmittance (> 90% in both substrates). AZO films deposited on PEN substrate showed similar electrical and optical properties like AZO films deposited on glass substrates.  相似文献   

7.
Luo Chen 《Vacuum》2008,82(11):1216-1219
Al-doped ZnO films were deposited at different target-substrate distances by radio frequency magnetron sputtering. The crystallite size of the films is reduced with increasing the target-substrate distance, but the (002) preferential orientation of ZnO is observed for all the films. It is found that the target-substrate distance has a great influence on the carrier concentration in the films. Reduction of the target-substrate distance is favorable to obtain higher carrier concentrations. The lowest resistivity of 1.1 × 10−3 Ω cm is obtained for the film at target-substrate distance of 55 mm. The optical transmittance in the visible range remains higher than 90% for all the films, and the absorption edge shifts towards the shorter wavelength side with decreasing the target-substrate distance. The band gap was widened by 0.11 eV due to the Burstein-Moss (BM) shift from 3.33 eV to 3.44 eV with the reduction of the target-substrate distance from 60 mm to 55 mm.  相似文献   

8.
In transparent conducting impurity-doped ZnO thin films prepared on glass substrates by a dc magnetron sputtering (dc-MS) deposition, the obtainable lowest resistivity and the spatial resistivity distribution on the substrate surface were improved by a newly developed MS deposition method. The decrease of obtainable lowest resistivity as well as the improvement of spatial resistivity distribution on the substrate surface in Al- or Ga-doped ZnO (AZO or GZO) thin films were successfully achieved by inserting a very thin buffer layer, prepared using the same MS apparatus with the same target, between the thin film and the glass substrate. The deposition of the buffer layer required a more strongly oxidized target surface than possible to attain during a conventional dc-MS deposition. The optimal thickness of the buffer layer was found to be about 10 nm for both GZO and AZO thin films. The resistivity decrease is mainly attributed to an increase of Hall mobility rather than carrier concentration, resulting from an improvement of crystallinity coming from insertion of the buffer layer. Resistivities of 3 × 10− 4 and 4 × 10− 4Ω cm were obtained in 100 nm-thick-GZO and AZO thin films, respectively, incorporating a 10 nm-thick-buffer layer prepared at a substrate temperature around 200 °C.  相似文献   

9.
This work reports a method used to control Al doping of ZnO thin films deposited by high-power impulse magnetron sputtering of a pure Zn target in low-pressure Ar/O2 gas mixture. The method uses sputtering of an electrically negative biased aluminum electrode placed in the proximity of the negative glow of the magnetron discharge. Resonant laser absorption measurements of Al atom concentration in vapor phase and the X-ray Photoelectron Emission Spectroscopy measurements of Al concentration in the deposited ZnO:Al films confirm that the electrode biasing potential is the key parameter that controls the Al doping process. Optically transparent ZnO:Al films with resistivity as low as 3.6 × 10− 3 Ω × cm have been obtained at an optimum value of Al concentration of 1.5 at.%. It has been found that the film electrical conductivity is limited by the effect of decreasing of crystalline grain size in the films with the increased Al doping concentration.  相似文献   

10.
Highly conducting tri-layer films consisting of a Cu layer sandwiched between Al-doped ZnO (AZO) layers (AZO/Cu/AZO) were prepared on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of AZO and ion-beam sputtering of Cu. The tri-layer films have superior photoelectric properties compared with the bi-layer films (Cu/AZO, AZO/Cu) and single AZO films. The effect of AZO thickness on the properties of the tri-layer films was discussed. The X-ray diffraction spectra show that all films are polycrystalline consisting of a Cu layer with the cubic structure and two AZO layers with the ZnO hexagonal structure having a preferred orientation of (0 0 2) along the c-axis, and the crystallite size and the surface roughness increase simultaneously with the increase of AZO thickness. When the AZO thickness increases from 20 to 100 nm, the average transmittance increases initially and then decreases. When the fixed Cu thickness is 8 nm and the optimum AZO thickness of 40 nm was found, a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84% in the wavelength range of visible spectrum of tri-layer films have been obtained. The merit figure (FTC) for revaluing transparent electrodes can reach to 1.94 × 10−2 Ω−1.  相似文献   

11.
Hard, nanocomposite aluminum magnesium boride thin films were prepared on Si (100) substrates with a three target magnetron sputtering system. The films were characterized by X-ray diffraction, atomic force microscope, electron micro-probe, Fourier transform infrared spectroscopy and nanoindentation. The results show that the maximum hardness of the as-deposited films is about 30.7 GPa and these films are all X-ray amorphous with smooth surfaces. The influences of substrate temperature and boron sputtering power on the quality of the films are discussed. From the results of this work, magnetron sputtering is a promising method to deposit Al-Mg-B thin films.  相似文献   

12.
Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on substrates including alkali-free glass, quartz glass, Si, and SiO2 buffer layer on alkali-free glass by using radio frequency magnetron sputtering. The effects of different substrates on the structural, electrical and optical properties of the AZO films were investigated. It was found that the crystal structures were remarkably influenced by the type of the substrates due to their different thermal expansion coefficients, lattice mismatch and flatness. The AZO film (100 nm in thickness) deposited on the quartz glass exhibited the best crystallinity, followed sequentially by those deposited on the Si, the SiO2 buffer layer, and the alkali-free glass. The film deposited on the quartz glass showed the lowest resistivity of 5.14 × 10− 4 Ω cm among all the films, a carrier concentration of 1.97 × 1021 cm− 3 and a Hall mobility of 6.14 cm2/v·s. The average transmittance of this film was above 90% in the visible light spectrum range. Investigation into the thickness-dependence of the AZO films revealed that the crystallinity was improved with increasing thickness and decreasing surface roughness, accompanied with a decrease in the film resistivity.  相似文献   

13.
Jong Hoon Kim 《Thin solid films》2008,516(7):1330-1333
Ga doped ZnO (GZO) thin films were prepared by rf-magnetron sputtering on glass substrate for window heater applications. Electrical and optical properties of these films were analyzed in order to investigate on substrate temperature and rf power dependencies. High quality GZO films with a resistivity of 1.30 × 10− 4 Ω cm and a transparency above 90% in the visible range were able to be formed. GZO films have been patterned on glass substrate as a line heater. This GZO line heater showed the rapid heat radiation property from room temperature to 90 °C for 22 s at the applied voltage of 42 V. These results could provide a possibility to use GZO as effective transparent heaters.  相似文献   

14.
Mn-doped zinc oxide (ZnO:Mn) thin films with low resistivity and relatively high transparency were firstly prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. Influence of film thickness on the properties of ZnO:Mn films was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. As the thickness increases from 144 to 479 nm, the crystallite size increases while the electrical resistivity decreases. However, as the thickness increases from 479 to 783 nm, the crystallite size decreases and the electrical resistivity increases. When film thickness is 479 nm, the deposited films have the lowest resistivity of 2.1 × 10− 4 Ω cm and a relatively high transmittance of above 84% in the visible range.  相似文献   

15.
The influence of rapid thermal annealing (RTA) on surface texture formation as well as the light management obtainable by wet-chemically etching was investigated for transparent conducting Al-doped ZnO (AZO) thin films prepared by various types of magnetron sputtering deposition (MSD) with an oxide target. Texture-etched AZO films prepared by an r.f. (13.56 MHz) power-superimposed d.c. magnetron sputtering deposition (rf + dc-MSD) exhibited a higher haze value than found in equivalent films prepared by d.c. MSD. The order that the RTA treatment and the etching were conducted considerably affected the obtainable surface texture. Conducting the etching after a heat treatment with RTA in air resulted in larger etch pits as well as higher haze values than were obtained in AZO films that were etched before the RTA. A high haze value generally above 70% in the range from visible to near infrared (at wavelengths up to 1200 nm) was obtained in texture-etched AZO thin films that were prepared by rf + dc-MSD and etched after RTA at a temperature of 500 °C for 3 min.  相似文献   

16.
17.
ZnO films deposited at different oblique angles of 40, 60 and 80°, under different Ar pressures 0.27, 0.67, 1.33 and 2.67 Pa, DC currents of 0.15 and 0.25 A, and distances of 10-15 cm from the target were studied. It was found that the film grains grow at an angle to the substrate when deposition angle is above 40°. It was shown that the grains consisted of a number of small crystals growing one on top of the other and shifted towards the target with the crystal orientation not along the grain growth but perpendicular to the substrate. Crystal size decreased with the deposition angle and internal stress disappeared when α = 80°. It was found that 1.33 Pa pressure provided the best balance between the deposition parameters. Growth rate reached maximum, samples had the biggest crystal size and high crystal density. However, crystal spatial alignment changed gradually with pressure and distance.  相似文献   

18.
Structures and magnetic properties of Co and CoFe films on Si(100) have been investigated by employing scanning tunneling microscopy, atomic force microscopy, and magneto-optic Kerr effect techniques. As the film thickness increases, Co or CoFe clusters with different sizes are observed. As the film thickness increases below 20 nm, the size of the metal clusters decreases. For thicker films, the surface roughness increases monotonously by increasing the thickness. The easy axis of magnetization for both Co/Si(100) and CoFe/Si(100) prefers to be in the surface plane. By deposition of the Co or CoFe overlayers, the evolution of the longitudinal coercive force shows similar trend to the surface roughness. Minimum coercive force coincides with the smallest roughness of the film. For a film with greater roughness, the observation of larger coercive force could be explained by the impediment of the propagation of domain wall motion by defects of the films. At a higher deposition rate, Co islands in triangle shapes with an edge length around 100 nm are observed. This nanostructure shows an hcp-Co with the c axis parallel to the surface plane and is observed to be able to stabilize the coercive force for Co/Si(100) films.  相似文献   

19.
Al-doped ZnO (AZO) transparent conductive thin films have been prepared by radio-frequency magnetron sputtering with a ceramic target (98 wt.% ZnO, 2 wt.% Al2O3) in different Ar + H2 ambient at a substrate temperature of 200 °C. To investigate the influence of H2-flow on the properties of AZO films, H2-flow was changed during the growth process with a fixed Ar-flow of 60 sccm. The results indicate that H2-flow has a considerable influence on the transparent conductive properties of AZO films. The low resistivity in the order of 10− 4 Ω cm and the high average transmittance more than 92% in the visible range were obtained for the samples prepared in the optimal H2-flow range from 0.4 sccm to 1.0 sccm. In addition, the influence of H2-flow on the structure and composition of AZO films have also been studied.  相似文献   

20.
In order to determine the influence of different types of magnetron sputtering (MS) depositions on the characteristics of Al-doped ZnO (AZO) thin films appropriate for applications as transparent electrodes in thin-film solar cells, transparent conducting AZO thin films were prepared on glass substrates at 200 °C by direct current (dc) magnetron sputtering (dc-MS), radio frequency (rf)-MS and rf power superimposed dc-MS (rf + dc-MS) depositions using an MS apparatus with the same AZO target. AZO thin films prepared by an rf + dc-MS deposition exhibited both a higher deposition rate than that found with rf-MS depositions and a lower resistivity or higher Hall mobility than those found with dc-MS. The lower dc sputter voltage featured in rf-MS and rf ± dc-MS depositions, producing smoother surface morphology and better crystallinity than obtained with dc-MS depositions. The light scattering characteristics of surface-textured AZO thin films prepared by various types of MS depositions were evaluated by observing the surface texture and measuring the optical transmittance and the diffusive component; wet-chemical etching of the thin film surface was performed in a 0.1% HCl solution. The obtainable haze property in the range from visible to near infrared in AZO films prepared by an rf + dc-MS deposition was markedly better than that obtained with dc-MS depositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号