首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Antigen recognition signals by the TCR are transduced through activation motifs present in the cytoplasmic region of CD3 chains. In vitro analysis has suggested that the CD3zeta chain mediates different signals from other CD3 chains. To analyze the in vivo function of CD3zeta-mediated signals for T cell development, mice expressing a mutant CD3zeta chain lacking all the activation motifs were generated by introducing the transgene into zeta-knockout mice. Mature CD4(+) single-positive (SP) thymocytes in these mice were greater in number than in zeta-deficient mice, and the promoted differentiation was indicated by the changes of CD69 and HSA phenotypes. We found that even in the absence of activation motifs in CD3zeta, these mature cells became functional, being able to induce Ca2+ mobilization and proliferation upon stimulation. On the other hand, CD4(-)CD8(-) double-negative (DN) thymocytes, most of which were arrested at the CD44(-)CD25(+) stage similarly to those in zeta-deficient mice, could not be promoted for differentiation into CD4(+)CD8(+) double-positive thymocytes in these mice in spite of the fact that the expression of the transgene in DN thymocytes was higher than that of zeta in wild-type mice. These results demonstrate the preferential dependence of the promotion of development and/or expansion of DN thymocytes rather than mature thymocytes upon the activation signals through the zeta chain and suggest differential requirements of TCR signaling for mature SP and immature DN thymocyte developments in vivo.  相似文献   

3.
Previously, we described a mAb (1-23) reacting with a novel cell surface antigen expressed on thymocytes at late CD4-CD8- [(double negative (DN)] to early CD4+CD8+ [(double positive (DP)] differentiation stage. Since the expression of this molecule was restricted to immature thymocytes, we designated it as immature thymocyte antigen-1 (IMT-1). In this study, we have investigated the relevance of IMT-1 expression to thymocyte selection using TCR transgenic mice, scid mice or RAG-2-/- mice. The IMT-1+ population in DP thymocytes was decreased in the thymuses of MHC class I-restricted or class II-restricted TCR transgenic mice with a positively selecting MHC background when compared with that of the mice with a non-selecting MHC background. IMT-1+ DP thymocytes were also decreased in TCR transgenic mice in which negative selection occurs. When DP thymocytes in H-Y TCR transgenic mice were stimulated with CD3epsilon mAb in vitro as well as in vivo, the expression of IMT-1 on DP thymocytes was decreased. Furthermore, the expression of IMT-1 on DN thymocytes from RAG-2-/- mice was drastically reduced when CD3epsilon mAb was challenged in vivo. These results suggest that the expression of IMT-1 on DP or DN thymocytes is down-regulated by stimulation through TCR as well as pre-TCR. Taken together, these results show that IMT-1 is a unique surface marker which exquisitely separates pre-selected thymocytes from post-selected thymocytes.  相似文献   

4.
Cyclosporin A (CsA) is a powerful immunosuppressive drug widely used in transplantation medicine. A major effect of CsA is inhibition of the differentiation of immature double-positive (DP) CD4+ CD8+ thymocytes into mature single-positive (SP) CD4+ CD8- or CD4- CD8+ thymocytes. The mechanisms underlying the changes in CD4/CD8 expression during normal differentiation of thymocytes and the way CsA interferes with this differentiation process are still unknown. Here we show that protein kinase C (PKC) activation by phorbol 12-myristate 13-acetate (PMA) causes a decrease of both CD4 and CD8 expression at the cell surface level and at the mRNA level in a CD4+ CD8+ T cell line and in freshly isolated thymocytes. A PKC inhibitor, staurosporin, interferes with the differentiation from DP to SP in fetal thymus organ culture system. These data suggest that the alternation of CD4/CD8 expression from DP to SP is dependent on PKC activation. CsA blocks this decrease of CD4/CD8 expression by PMA in vitro. Moreover, this PMA effect is also blocked by treatment with cycloheximide. These results suggest that the reduction of CD4/CD8 expression requires de novo synthesis of a protein(s) induced in response to a signal conveyed by activated PKC. CsA may block the transition from DP to SP by inhibition of CD4/CD8 down-regulation induced by PKC activation.  相似文献   

5.
Activation of peripheral blood T cells by cross-linking of CD3 results in a rapid and substantial rise in translation rates and proliferation, which coincides with an increase in the cap-binding protein, eIF4E activity. In contrast, immature CD4+ CD8+ double-positive (DP) thymocytes undergo apoptosis in response to anti-CD3 mAb. We have investigated translation initiation in the response of immature thymocytes to activating signals. Activation by anti-CD3 + anti-CD4 of immature CD4+ CD8+ DP thymocytes results in a rapid decrease in protein synthesis. In contrast, similar treatment of CD4+ or CD8+ single-positive (SP) thymocytes results in an increase in protein synthesis. The rate of protein synthesis is linked to the phosphorylation status of eIF4E. Following anti-CD3 + anti-CD4 stimulation, eIF4E phosphorylation strongly decreases in immature DP thymocytes, whereas it increases in mature SP thymocytes. The expression of 4E-BP2, a specific repressor of eIF4E function, is high in DP cells but decreases during maturation, raising the possibility of a role for 4E-BP2 in repressing eIF4E phosphorylation. These data provide evidence for differential regulation of the translational machinery during T cell development.  相似文献   

6.
7.
Thymic selection of natural killer-1+ natural T cells that express alpha beta T cell receptors requires a conserved beta 2-microglobulin-associated molecule, presumably CD1d, displayed by CD4+8+ thymocytes. Here we demonstrate that positive selection of natural T cells occurs independent of transporters associated with antigen presentation-1 (TAP-1) function. Moreover, natural T cells in TAP-1o/o mice are numerically expanded. Several H-2 class Ib molecules function in a TAP-independent manner, suggesting that if expressed in TAP-1o/o thymocytes, they could play a role in natural T cell development. Of these class Ib molecules, H-2TL is expressed by TAP-1o/o thymocytes. Moreover, we find that thymi of TL+ mice congenic or transgenic for H-2T18 also have a numerically expanded natural T cell repertoire compared with TL- mice. This expansion, as in TAP-1o/o thymi, is evident in each of the limited T cell receptor V beta chains expressed by natural T cells, suggesting that TL and CD1d impact similar repertoires. Thus TL, in addition to CD1d, plays a role in natural T cell development.  相似文献   

8.
The TCR-associated CD3 complex consists of four subunits, i.e. CD3 gamma, delta, epsilon and zeta, which are expressed very early in T cell development prior to the expression of the TCR and the pre-TCR alpha chain. It is unclear whether the expression of each CD3 protein is independent of, or is influenced by, other CD3 subunits. To study whether CD3 epsilon regulates expression of CD3 gamma and delta genes, we generated a strain of CD3 epsilon-deficient mice termed CD3 epsilon(delta P/delta P) (epsilon(delta P)), in which the promoter of CD3E was disrupted, and subsequently reconstituted these mice with a CD3 epsilon transgene. In the epsilon(delta P) mice, T cell development is arrested at the double-negative stage and targeting the CD3 epsilon gene caused severe inhibition of CD3 gamma and delta gene expression. Introduction of the CD3 epsilon transgene did not restore CD3 gamma and delta expression. However, a very small fraction of prothymocytes that expressed CD3 gamma and delta was rescued upon reconstitution of the CD3 epsilon transgene. Remarkably, this rescue led to a very efficient differentiation and maturation of thymocytes, resulting in a significant T cell population in the periphery. These results demonstrate that CD3 epsilon does not regulate expression of CD3 gamma and delta genes, and underscore the capacity of each prothymocyte to give rise to a large number of mature peripheral T cells.  相似文献   

9.
Hox homeobox genes play a crucial role in specifying the embryonic body pattern. However, a role for Hox genes in T-cell development has not been explored. The Hoxa-9 gene is expressed in normal adult and fetal thymuses. Fetal thymuses of mice homozygous for an interruption of the Hoxa-9 gene are one eighth normal size and have a 25-fold decrease in the number of primitive thymocytes expressing the interleukin-2 receptor (IL-2R, CD25). Progression to the double positive (CD4+CD8+) stage is dramatically retarded in fetal thymic organ cultures. This aberrant development is associated with decreased amounts of intracellular CD3 and T-cell receptor beta (TCRbeta) and reduced surface expression of IL-7R and E-cadherin. Mutant thymocytes show a significant increase in apoptotic cell death and premature downregulation of bcl-2 expression. A similar phenotype is seen in primitive thymocytes from adult Hoxa-9-/- mice and from mice transplanted with Hoxa-9-/- marrow. Hoxa-9 appears to play a previously unsuspected role in T-cell ontogeny by modulating cell survival of early thymocytes and by regulating their subsequent differentiation.  相似文献   

10.
The Schlafen (Slfn) family of genes are differentially regulated during thymocyte maturation and are preferentially expressed in the lymphoid tissues. Ectopic expression of the prototype member Slfn1 early in the T lineage profoundly alters cell growth and development. In these mice, the DP thymocytes fail to complete maturation, and, depending on the transgene dosage, the number of thymocytes is reduced to 1%-30% of normal. Furthermore, expression of the Schlafen family members in fibroblasts and thymoma cells either retards or ablates cell growth. The conceptual protein sequences deduced for each of the family members have no similarity to characterized proteins and must therefore participate in a heretofore unknown regulatory mechanism guiding both cell growth and T cell development.  相似文献   

11.
Lupus-prone mice develop a systemic autoimmune disease that is dependent upon the B cell help provided by autoreactive alphabeta CD4+ T cells. Since autoreactive T cells with high affinity for self peptides are normally deleted in the thymus, their presence in these mice suggests the possibility that intrathymic negative selection may be defective. Here, we directly compared central T cell tolerance in response to a conventional peptide Ag in lupus-prone MRL/MpJ mice with a nonautoimmune strain using an MHC class II-restricted TCR transgene. Our results did not demonstrate any defects after Ag exposure in the induction of intrathymic deletion of immature CD4+ CD8+ thymocytes, in TCR down-regulation, or in the number of apoptotic thymocytes in MRL/MpJ compared with nonautoimmune mice. Furthermore, we found that the lpr mutation had no influence upon the Ag-induced thymic deletion of immature thymocytes. These data support the notion that T cell autoreactivity in MRL/MpJ mice is caused by defects in peripheral control mechanisms.  相似文献   

12.
13.
CD3delta-deficient (delta degrees) mice are defective in alphabeta T cell development. Here we explore the capacity of TCR-CD3 signaling complexes expressed on delta degrees thymocytes to mediate the following functional outcomes in response to antibody cross-linking: (i) the transition from the CD4-CD8- to CD4+CD8+ stage, (ii) the transition from the CD4+CD8+ to CD4+CD8- or CD4-CD8+ stages and (iii) the induction of apoptosis. We provide evidence that CD3deltaepsilon complexes are dispensable for mediating the anti-CD3-mediated CD4-CD8- to CD4+CD8+ transition. On the other hand, CD3delta is critical at the CD4+CD8+ stage. We demonstrate that CD4+CD8+ thymocytes from delta degrees mice, unlike delta degrees CD4-CD8- thymocytes and wild-type CD4+CD8+ thymocytes, require prolonged or consecutive stimuli to elicit functional responses. Depending on the nature of the secondary stimulus, delta degrees thymocytes can be induced to undergo apoptosis or preferential maturation to the CD4-CD8+ stage. Taken together these results indicate that the signaling capacity of the TCR-CD3 complex is noticeably altered in the absence of CD3delta. The essential role of CD3delta at the CD4+CD8+ stage of development correlates with the onset of TCRalpha rearrangement, consistent with a critical structural and/or functional relationship between CD3delta and TCRalpha.  相似文献   

14.
The extracellular signal-regulated kinase (ERK), the c-Jun NH2-terminal kinase (JNK), and p38 MAP kinase pathways are triggered upon ligation of the antigen-specific T cell receptor (TCR). During the development of T cells in the thymus, the ERK pathway is required for differentiation of CD4(-)CD8(-) into CD4(+)CD8(+) double positive (DP) thymocytes, positive selection of DP cells, and their maturation into CD4(+) cells. However, the ERK pathway is not required for negative selection. Here, we show that JNK is activated in DP thymocytes in vivo in response to signals that initiate negative selection. The activation of JNK in these cells appears to be mediated by the MAP kinase kinase MKK7 since high levels of MKK7 and low levels of Sek-1/MKK4 gene expression were detected in thymocytes. Using dominant negative JNK transgenic mice, we show that inhibition of the JNK pathway reduces the in vivo deletion of DP thymocytes. In addition, the increased resistance of DP thymocytes to cell death in these mice produces an accelerated reconstitution of normal thymic populations upon in vivo DP elimination. Together, these data indicate that the JNK pathway contributes to the deletion of DP thymocytes by apoptosis in response to TCR-derived and other thymic environment- mediated signals.  相似文献   

15.
A 250-cGy whole-body gamma-radiation dose was used to induce thymus regression in mice, and to study the expression and function of extracellular matrix (ECM) receptors in distinct thymocyte subsets emerging during repopulation of the organ. The onset of regeneration was detected from day 2 to 3 postirradiation (P-Ir), when a remarkable increase in the absolute counts of CD3(-)CD25(hi)CD44(+) and CD3(-)CD25(in/hi)CD44(-) cells occurred. Enhanced expression of L-selectin, alpha4, and alpha5 integrin chains (L-selhi alpha4(hi) alpha5(hi)) was also exhibited by these cells. This pattern of expression was maintained until the CD4(+)CD8(+) (DP) young stage was achieved. Afterward, there was a general downregulation of these ECM receptors in DP as well as in CD4(+) or CD8(+) single positive (SP) thymocytes (L-selin alpha4(in) alpha5(in)). In some recently generated SP cells, alpha4 expression was downregulated before the alpha5 chain, and L-selectin was upregulated in half of more mature cells. The expression of the alpha6 integrin chain was downregulated only in maturing CD4(+) cells. Importantly, the increased expression of L-selectin and alpha4 and alpha5 chains in thymocytes was strongly correlated with their adhesiveness to thymic epithelial cells (TEC) in vitro. Blocking experiments with monoclonal antibody or peptides showed the following: (1) that the LDV rather than the REDV cell attachment motif in the IIIC segment of fibronectin is targeted by the alpha4 integrin during thymocyte/TEC adhesion; (2) that the RGD motif of the 120-kD fragment of fibronectin, a target for alpha5 integrin, has a secondary role in this adhesion; and (3) that the YIGSR cell attachment motif of the beta1 chain of laminin/merosin recognized by a nonintegrin receptor is not used for thymocyte adherence. In conclusion, our results show that an upregulated set of receptors endows CD25(+) precursors and cells up to the young DP stage with a high capability of interacting with thymic ECM components.  相似文献   

16.
The CD4 gene follows a complex and highly regulated pattern of expression throughout T cell development. This expression is governed by different regulatory elements that have been partly identified, including a promoter, a proximal enhancer, and a silencer. Here we show that a CD4 minigene comprising a combination of these elements is specifically expressed in mature CD4+ T cells of transgenic mice, but not in CD4+CD8+ double positive thymocytes. The proportion of transgene-expressing CD4+ T cells was constant within a given transgenic line, but varied greatly from one line to another. We demonstrate that this pattern of expression is due to integration of the transgene within or in the vicinity of centromeric heterochromatin. This position-effect variegation demonstrated with a short CD4 transgene has not been observed with larger ones containing additional regulatory sequences, suggesting that the CD4 gene contains a locus control region. Such position-dependent effects must be taken into consideration when developing transgenic models or gene transfer vectors because they can result in the absence of transgene expression in a subpopulation of target cells. Finally, the combination of the CD4 gene silencer, proximal enhancer, and promoter provides an interesting tool to selectively express genes of interest in mature CD4+ T cells of transgenic mice and for the development of gene therapy vectors.  相似文献   

17.
Analysis of antigen-induced negative selection of thymocytes in T cell receptor (TCR)-transgenic mice is complicated by the presence of an antigen-responsive peripheral T cell compartment. Our experiments address the question of whether and how peripheral T cell activation can affect immature thymocytes. Following three daily injections of peptide antigen into mice expressing a peptide-specific transgenic TCR and deficient for TAP1, we and others have found profound deletion of the CD4+CD8+ (DP) thymocyte subset. However, our work shows that even though mature CD8+ T cells are inefficiently selected in TAP1-deficient mice, there was a striking degree of peripheral expansion and activation of CD8+ peripheral T cells. Furthermore, when cells from TCR-transgenic mice were adoptively transferred, we found that deletion of nontransgenic DP thymocytes occurred in Thy-1-congenic and even more efficiently in TAP1-deficient recipients after repeated peptide injection resulting in peripheral T cell activation. In the adoptive transfer experiments the degree of deletion of immature bystander thymocytes was decreased upon blocking of TNF. These data show that deletion of DP thymocytes can result from excessive peripheral T cell activation and identify TNF as an important effector molecule for this process. When steps are taken to avoid peripheral T cell activation, peptide antigen can induce TCR-mediated thymocyte deletion, presumably in the thymus cortex, since injection of TAP1-deficient TCR-transgenic mice resulted in deletion of immature DP thymocytes prior to detectable peripheral T cell expansion and activation. This effect was not blocked by inhibiting tumor necrosis factor activity. In addition, DP depletion was seen in the absence of peripheral T cell activation when antibody-mediated depletion of CD8+ T cells was performed. Our work clearly shows that two mechanisms for deletion of DP thymocytes exist: deletion induced by antigen presentation in the thymus and deletion as a consequence of repeated stimulation of mature peripheral T cells.  相似文献   

18.
Dipeptidyl peptidase I (DPPI) is a granule protease that plays a requisite role in processing the proenzyme form of the CTL granule serine proteases (granzymes). This study assesses DPPI mRNA and enzyme expression during T lymphocyte ontogeny and CTL differentiation. The most immature CD3- CD4- CD8- thymocytes were found to express >40-fold higher levels of DPPI mRNA, although levels of DPPI enzymatic activity in CD3- CD4- CD8- thymocytes were only modestly higher than those seen for CD4+ CD8+ or CD4+ CD8- thymocytes. More mature CD8+ CD4- thymocytes and CD8+ splenocytes expressed significantly higher levels of DPPI mRNA and enzymatic activity than CD4+ CD8+ or CD4+ CD8- thymocytes. Granzyme A mRNA expression was observed in DPPI expressing CD3- CD4- CD8- and CD8+ CD4- thymocytes and was also observed in CD8+ CD4- splenocytes; however, expression was not observed in CD4+ CD8+ or CD4+ CD8- thymocytes. Both DPPI mRNA and granzyme A mRNA expression in CD8+ T cells decreased to very low or undetectable levels during the first 48 h after allostimulation in MLCs. However, peak levels of both DPPI and granzyme A expression were observed later in the course of CD8+ T cell responses to alloantigen, with DPPI mRNA expression peaking on either day 3 or day 4 and granzyme A expression peaking at the end of a 5-day MLR. These data indicate that DPPI is expressed at all stages of T cell ontogeny and differentiation in which granzyme A mRNA is detected; consequently, DPPI appears to be available for the processing and activation of granzyme A during both CD8+ T cell development and differentiation.  相似文献   

19.
The T cell receptor (TCR) delta locus lies within the TCR alpha locus and is excised from the chromosome by V alpha-J alpha rearrangement. We show here that delta sequences persist in a large fraction of the DNA from mature CD4+CD8- alpha beta+ mouse thymocytes. Virtually all delta loci in these cells are rearranged and present in extrachromosomal DNA. In immature alpha beta lineage thymocytes (CD3-/loCD4+CD8+) and in CD4+CD8- alpha beta+ thymocytes expressing a transgene-encoded alpha beta receptor, rearranged delta genes are present both in chromosomal and extrachromosomal DNA. Thus, contrary to earlier proposals, commitment to the alpha beta lineage does not require recombinational silencing of the delta locus or its deletion by a site-specific mechanism prior to V alpha-J alpha rearrangement.  相似文献   

20.
CD3gamma and CD3delta are the most closely related CD3 components, both of which participate in the TCRalphabeta-CD3 complex expressed on mature T cells. Interestingly, however, CD3delta does not appear to participate functionally in the pre-T-cell receptor (TCR) complex that is expressed on immature T cells: disruption of CD3delta gene expression has no effect on the developmental steps controlled by the pre-TCR. Here we report that in contrast with CD3delta, CD3gamma is an essential component of the pre-TCR. We generated mice selectively lacking expression of CD3gamma, in which expression of CD3delta, CD3epsilon, CD3zeta, pTalpha and TCRbeta remained undisturbed. Thus, all components for composing a pre-TCR are available, with the exception of CD3gamma. Nevertheless, T-cell development is severely inhibited in CD3gamma-deficient mice. The number of cells in the thymus is reduced to <1% of that in normal mice, and the large majority of thymocytes lack CD4 and CD8 and are arrested at the CD44-CD25+ double negative (DN) stage of development. Peripheral lymphoid organs are also practically devoid of T cells, with absolute numbers of peripheral T cells reduced to only 2-5% of those in normal mice. Both TCRalphabeta and TCRgammadelta lineages fail to develop effectively in CD3gamma-deficient mice, although absence of CD3gamma has no effect on gene rearrangements of the TCRbeta, delta and gamma loci. Furthermore, absence of CD3gamma results in a severe reduction in the level of TCR and CD3epsilon expression at the cell surface of thymocytes and peripheral T cells. The defect in the DN to double positive transition in mice lacking CD3gamma can be overcome by anti-CD3epsilon-mediated cross-linking. CD3gamma is thus essential for pre-TCR function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号