首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of water surface slope in the lateral direction on flow over side weirs was studied. Water surface elevation on the weir plane was expressed by a parameter ψ based upon the hydraulic profile on the channel axis. Two different relationships of ψ as a function of the Froude number were used to calculate side weir discharges. Results were compared with the experimental data. It was shown that better results are obtained when transition conditions of ψ = 1 at the ends of the side weirs with no lateral surface slope are taken into account. However the effect of water surface slope in lateral direction is of secondary importance as compared to the angle of the deflected water jet along the side weir.  相似文献   

2.
Side weirs are flow-regulating devices commonly encountered in hydraulic engineering. In the past, the discharge coefficient for flow past a side weir was investigated experimentally by many researchers. In this study, a modified discharge coefficient Cd for side weirs in rectangular channels and circular channels is defined. The multivariable nonlinear partial least square (PLS) method is used to determine the empirical equations relating Cd with the dimensionless weir parameters F1, S/Y1, and L/D. Compared to the previous studies, the procedures to calculate the discharge of the side weirs is simplified. The discharge predicted using the empirical equations based on the nonlinear PLS method is in good agreement with the measured discharge. The nonlinear PLS method can also be applied to many other hydraulic flow configurations characterized by a large number of variables.  相似文献   

3.
Flow over Gabion Weirs   总被引:1,自引:0,他引:1  
A conventional weir typically consists of an impermeable body constructed of concrete, since its primary functions are to heading up water and efficiently regulate flow. However, an impermeable body prevents the longitudinal movement of aquatic life and transportation of physical and chemical substances in water, eventually having a negative impact on the water environment. One of the advantages of gabions as a building material is that the motion of individual stones comprising the gabion is not of much concern. The wire mesh of the gabion basket serves to restrain any significant movement. Also, gabion weirs offer an alternative design that could be adopted for flash flood mitigation. In this study, a series of laboratory experiments was performed in order to investigate the flow over gabion weirs. For this purpose, two different gabion weir models were tested in two horizontal laboratory flumes of 10-m and 17-m length, 0.3-m width, and 0.3- and 0.5-m depth, respectively, for a wide range of discharge, upstream water depth, downstream water depth, weir height, weir length, and gabion filling gravel material size. The results of the gabion weir were compared with those of experiments carried out on solid weirs having the same dimension and it was found that there is a large deviation when the solid weirs equation is applied to gabion weirs (permeable weirs). So, using one of the existing solid weir flow formulas would lead to an erroneous calculated value. Multiple regression equations based on the dimensional analysis theory were developed for computing the discharge over gabion weirs for both free and submerged flow regimes. Also, equations were introduced for computing the discharge coefficient to be applied with the traditional solid weir equation.  相似文献   

4.
Aeration Performance of Triangular Planform Labyrinth Weirs   总被引:2,自引:0,他引:2  
A high level of dissolved oxygen is vital for the maintenance of healthy streams and rivers. Structures in rivers can increase dissolved oxygen levels by creating turbulent conditions where small air bubbles are carried into the bulk of the flow. Plunging overfall jets from weirs are a particular instance of this, and the aeration properties of such structures have been studied widely in the laboratory and field over a number of years. On the other hand, labyrinth weirs, where the weir sill is cranked in planform thus increasing their length, have received little or no attention in this context. They have a proven hydraulic advantage over straight weirs of increased discharge at the same head for design conditions. However, they also serve to modify the combined overfall jet as individual jets from adjacent sections of the weir collide. This paper describes an experimental investigation into the nature of these jets and how they affect the aeration performance of a triangular plan labyrinth weir. It is demonstrated that the aeration efficiency of these labyrinth weirs generally is better than their equivalent-length linear weir and that this advantage becomes more pronounced as the weir included angle becomes smaller and also at lower overfall drop heights and higher discharges. These results point to the possible advantage of these type of weir in situations where both hydraulic and aeration performance needs to be optimized.  相似文献   

5.
The sharp-crested weir is the most commonly used device in channels for flow measurement and flow regulation due to its simplicity. Attempts have been made to study in detail the flow over different shapes of normal conventional weirs, side weirs, and oblique weirs. Most of the investigators have expressed the discharge coefficient as a function of various parameters. The concern of this paper is to study flow over an inclined inverted triangular notch weir. Based on experimental work on 0° (normal) and 15, 30, 45, and 60° weirs, the writers have established an equation for discharge in terms of the inclination angle of the weir plane with the plane normal to the flow axis. A new general algebraic optimization procedure has been developed for evolving a linear head-discharge relationship for an inclined inverted V-notch (IIVN), which is relatively superior to similar procedures developed earlier. It has been shown that the IIVN does not lose its near-linear discharging characteristics even when it is inclined to the channel bed. The discharge estimated by the linear discharge-head relationship has been found to be in good agreement with the actual discharges well within a ±5% error. Further, the advantages of the IIVN as a flow measuring and flow control device have been highlighted.  相似文献   

6.
Discharge Capacity of Labyrinth Side Weir Located on a Straight Channel   总被引:3,自引:0,他引:3  
Side weirs, also known as lateral weirs, are flow diversion devices widely used in irrigation as a head regulator of distributaries and escapes, land drainage, and urban sewage systems. The studies on the subject have been generally focused on rectangular and triangular side weirs located on a straight channel. However, the same is not true for labyrinth side weirs. The current studies deal with sediment transport and scour problems around side weirs and lateral structures. The investigation of the hydraulic effects of labyrinth side weirs to increase discharge capacity of them has been studied in this particular work. In the study, 2,830 laboratory tests were conducted for determining discharge coefficient of labyrinth side weirs, and results were analyzed to find the influence of the dimensionless weir length L/b, the dimensionless effective length L/?, the dimensionless weir height p/h1, triangular labyrinth side weir included angle θ, and upstream Froude number F1 on the discharge coefficient, water surface profile and velocities in the channel along the side weir. It has been found that discharge coefficient of labyrinth side weirs gives pretty higher coefficient value compare to that of classical side weirs and a reliable equation for discharge coefficient of labyrinth weirs is presented. Discharge coefficient of the labyrinth side weir is 1.5–4.5 times higher than rectangular side weir.  相似文献   

7.
An iterative step method for solving the nonlinear ordinary differential equation, governing spatially varied flows with decreasing discharge, like the flow over side weirs, is developed. In the procedure, starting at a known flow depth and discharge in the control section, the analytical integration of the dynamic equation with bed and friction slope is carried out. The specific energy, the weir coefficient and the velocity distribution coefficient are considered as local variables, then for the explicit integration, the respective average values along the short side weir elements are assumed. The water surface profiles and the discharges for flow over side weirs, obtained with the proposed relation and valid for rectangular channels, are compared with experimental data for subcritical and supercritical flow conditions. The validation of the method is accomplished by the comparison with the solution obtained by De Marchi’s classical hypothesis, about the specific energy, which is constant along a side weir. In addition, the influence of the coefficient velocity distribution is considered.  相似文献   

8.
The critical flow principle is a useful approach for the hydraulic analysis of round-crested weirs due to their single head-discharge relationships. The hydraulics of circular-crested weirs is examined using simplified models incorporating streamline curvature effects, comparing their predictions with experimental data. A generalized one-dimensional model based on the critical flow in curvilinear motion has been developed. The discharge coefficient increases with the specific energy normalized with the radius of curvature, E/R, when streamline curvature effects are included. The relative flow depth at the crest decreases as E/R increases. The flow at the weir crest is only critical for a normalized specific energy value of E/R ≈ 0.5–0.6. For larger heads, the flow at the weir crest has been found to be supercritical.  相似文献   

9.
Hydraulic Characteristics of Gabion-Stepped Weirs   总被引:1,自引:0,他引:1  
Experimental studies on the hydraulics of flow through and over gabion-stepped weirs are presented. Two flow components were observed, i.e., base flow through the void between filled stones and overflow on the gabions. The energy loss ratios in the gabion-stepped weirs are greater than those in the corresponding horizontal stepped weirs by approximately 7, 10, and 14% for weir slopes of 30, 45, and 60°, respectively. As a result, the velocity at the outlet is lower. Stone size and shape have little influence on the energy loss and flow velocity as compared to the increasing effect of the weir slope. The pressure acting on the step face for the gabion-stepped weirs is less than that of the horizontal steps owing to the cushioning effect generated by filled stones. To reduce pressure on a step face at a fixed discharge for different weir slopes, the void ratio of the filled stones should be low to allow a small amount of base flow. The pressure distribution pattern on the horizontal face of a step is provided.  相似文献   

10.
This technical note presents a critical analysis flow over weirs of finite crest length, with square-edged or rounded entrance, for free-flow conditions. Using the flow equation for the broad-crested weir with parallel flow in the critical state as the basis, we have defined the discharge coefficient Cd, with the head on the weir as the length scale. Based on an extensive analysis of the experimental observations in the literature, we have confirmed the classification of finite crest length weirs into four classes of long-crested, broad-crested, short-crested, and sharp-crested weirs. For the square-edged entrance, we have developed robust correlations for Cd when the Weber number is greater than 1. For weirs with a rounded entrance, for which the data set is not that extensive compared to the square-edged case, we have developed good correlations for Cd.  相似文献   

11.
The slit weir has been recently shown to be effective in measuring very small discharge rates. In this study, the slit weir concept is extended to permit one to measure both very low and very high discharge rates accurately. For this purpose, the hydrodynamic concept of images is adopted to form a bank of multislit weirs in which the individual slit weirs have nearly identical flow characteristics. The discharge coefficient of multislit weirs is determined experimentally using the measured discharges and the corresponding heads causing weir flow. The relationship between the discharge coefficient and the main dimensionless parameters is investigated. It is concluded that the discharge coefficient can be represented solely as a function of the Reynolds number.  相似文献   

12.
The average water surface slope in the lateral direction is taken into account as a local parameter ψ to study flow over a side weir. It was later shown that for smaller side weir lengths and side weir portions with no entrance and exit transition effects, ψ can be obtained from a numerical integral and also from the measurements of water surface elevations in the lateral direction. The effect of elemental weir length was further determined. Dividing the weir length into smaller computational segments has the effect of lowering the water surface to approach the measured profile, the downstream ends being coincident. The model was verified using experimental data.  相似文献   

13.
Aeration Performance of Rectangular Planform Labyrinth Weirs   总被引:1,自引:0,他引:1  
Maintenance of a high level of dissolved oxygen is important in natural rivers and in some water treatment processes. This can be enhanced by creating turbulence in the water. One method of producing such turbulence is via the overflow jets downstream of weir structures. The aeration characteristics of straight weirs have been measured and analyzed by a number of investigators. However, labyrinth weirs, which are cranked in planform, have received little attention in this respect. The aeration performance of a weir under a particular set of flow conditions is largely determined by the characteristics of the overall jet. The geometry of labyrinth weirs provides increased sill length and often results in the overfall jets colliding with each other, both of which may lead to increased aeration. A series of laboratory experiments were run on rectangular planform labyrinth weirs. These showed that, although detailed geometry of the weir was not important, the labyrinth weirs aerated significantly better than an equivalent straight weir, particularly at low drop heights.  相似文献   

14.
It has been observed that submerged weirs in bendways realign the flow and in general improve navigation conditions. This qualitative observation has been the basis for field design. This paper presents a study of hydrodynamics in the Victoria Bendway in the Mississippi River using three-dimensional numerical simulations. A numerical model, CCHE3D, was applied and computational results were compared to three-dimensional velocity data provided by the U.S. Army Corps of Engineers with reasonable agreement. The numerical simulation results were then used to analyze helical currents due to the channel curvature and the presence of submerged weirs. The simulated flow realignment near the free surface indicates that the flow conditions in the bendway were improved by the submerged weirs, however, the effectiveness of each weir depends on its alignment, local channel morphology, and flow conditions.  相似文献   

15.
Discharge Coefficient for Sharp-Crested Side Weir in Subcritical Flow   总被引:1,自引:0,他引:1  
To estimate the outflow over a rectangular sharp-crested side weir, the discharge coefficient in the weir equation needs to be known. Although this type of structure has been designed and used extensively by hydraulic engineers, a universally acceptable discharge coefficient does not exist. In this study over 250 laboratory tests were conducted, and the results were analyzed to find the influence of the flow hydraulics and the geometric, channel, and weir shapes on the coefficient. The results show that for subcritical flow the De-Marchi assumption of constant energy is acceptable, and the weir discharge can therefore be used. Furthermore, it was discovered that the De-Marchi coefficient of discharge is a function of the upstream Froude number and the ratios of weir height to upstream depth and weir length to channel width, whereas the channel slope in subcritical flow can be ignored. Hence, an accurate equation for the coefficient of discharge is introduced.  相似文献   

16.
Hydraulic structures, such as stepped cascades and weirs, involve air entrainment (aeration) and oxygen transfer. Therefore, they can increase dissolved oxygen levels. Weir aeration occurs in rivers, fish hatcheries, and wastewater treatment plants. A stepped cascade aerator is another type of aeration structure. A stepped cascade consists of a series of steps or drops, built into the face of the chute. Often, the hydraulic head is naturally available and incurs no operating cost. For the preaeration process, weir and stepped cascade structures can be previously designed for clarifiers where weirs can be used as an aid to aeration process of treatment plants. Therefore, this paper aims to review the design considerations of circular clarifiers with combined weir and stepped cascade structures as a new approach and alternative preaeration system without energy requirement before aeration tank units. The detailed example for preaeration in circular clarifiers with combined weir and stepped cascade structures is presented. Thus, the circular clarifiers with weir and stepped cascade structures as effluent and preaeration strucures can be effectively redesigned with given new design considerations.  相似文献   

17.
中间包底吹氩行为的数值模拟   总被引:3,自引:0,他引:3  
 根据某钢厂连铸中间包的实际操作参数,采用欧拉两相流模型,气体入口边界条件按照多孔介质进行处理,利用CFX软件模拟计算了底吹氩中间包内钢液的流场。结果表明:底吹氩气技术代替上挡墙或下挡墙2种情况下,注入区钢液混合加剧,有利于夹杂物碰撞长大。浇注区靠近液面处速度提高易引起卷渣。当采用湍流控制器、上挡墙、下挡墙、底吹氩技术时,吹氩位置对钢液流动的影响较大,当在湍流控制器和上挡墙之间吹入气体时,钢液的流动特性有利于夹杂物的上浮去除。  相似文献   

18.
中间包结构优化及冶金效果   总被引:2,自引:2,他引:0  
通过水模型实验,对四流圆坯中间包三种挡墙形式下的包内流场进行模拟研究.结果表明:原挡墙控流下的中间包同一侧两流之间的流体流动特性存在很大差异,与内侧相比,外侧流的最小停留时间、峰值时间长、死区体积大,造成中间包内钢液温度不均匀,夹杂物不能有效地上浮去除.U型挡墙能很好地解决各流间的同步性,但是最小停留时间短,死区比例较大.采用Y型挡墙可以有效地改变中间包内流场分布,促进夹杂物上浮,提高钢水清洁度,为三种挡墙形式之最优.工业试验表明,Y型挡墙在降低铸坯总氧和夹杂物方面均优于原挡墙.  相似文献   

19.
基于有限元分析软件对中间包流场的数值模拟研究和优化结果表明,设置流动控制装置可明显改善钢水流动状况,有利于提高连铸坯质量。对比几种流动控制装置发现设置堰坝的效果更加明显,且堰坝间距750 mm、堰与注流口间距1350 mm时所得钢液净化效果最佳。  相似文献   

20.
Head-Discharge Relationships for Submerged Labyrinth Weirs   总被引:1,自引:0,他引:1  
Low-head labyrinth weir control structures installed on mild sloping channels or where the channel downstream of the weir is constricting and/or heavily vegetated can experience submergence. Weir submergence occurs when the tailwater surpasses the weir crest elevation, causing an increase in the upstream driving head for a given discharge, relative to a free-discharge condition. The most familiar relationship for predicting submerged weir head-discharge relationships is likely that of James R. Villemonte, which he published in 1947 for sharp-crested linear weirs. For lack of a better alternative, Villemonte’s relation has also been applied to predicting submerged labyrinth weir performance. A new dimensionless submerged head relationship developed in this study is presented for submerged labyrinth weirs. A similar relationship is also presented for linear sharp-crested weirs. The accuracy of the submerged linear weir relationship was equivalent to Villemonte’s and is simpler to solve when working in terms of total upstream head. Relative to Villemonte’s relationship applied to labyrinth weirs, the new submerged labyrinth weir relationship reduced the predictive errors from 23 to 3.5% (maximum) and 8.9 to 0.9% (average), relative to the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号