首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain a single-host-white-light phosphor,a series of Ba1.8-w-x-y-zSrwLi0.4-xCexEuyMnzSiO4(BSLS:Ce3+,Eu2+,Mn2+)powder samples were synthesized via high temperature solid-state reaction.The structure and photoluminescence properties were investigated.Under ultraviolet excitation,the emission spectra contained three bands:the 370-470 nm blue band,the 470-570 nm green band and the 570-700 nm red band,which arose from the 5d→4f transitions of Ce3+ and Eu2+,and the 4T1→6A1 transition of Mn2+,respectively.The excitation spectra of the emissions of Ce3+ and Mn2+ ions showed the energy transfer from Ce3+ to Mn2+.White light emission was obtained from the tri-doped samples of appropriate doping concentration under 310-360 nm excitation.  相似文献   

2.
Sr3-z(Alx,Si1-x)O -5-xFx:zCe3+ phosphors were synthesized by high-temperature solid-state reaction.The structure and luminescence properties of phosphors with various Al/Si ratios and Ce3+ concentrations were characterized using various methods such as X-ray diffraction,photoluminescence excitation and photoluminescence spectra.XRD result displayed that a complete solid solution between Sr3AlO4F and Sr3SiO5 was formed.With the increasing of x value,a broader excitation band and stronger absorption appeared in the blue light region.Moreover,the emission band shifted to a shorter wavelength and the emission intensity reached a maximum at x=0.6.By adjusting the concentration of Ce3+,a widely tunable range of emission wavelength under the excitation of 460 nm was obtained from the green to yellow regions.In addition,the concentration and thermal quenching were also discussed.  相似文献   

3.
Single phase of BaGd0.9-xMxEu0.1B9O16 (M=Al or Sc, 0≤x≤0.3) powder was prepared by the solid-state reaction and its photoluminescence (PL) properties were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation. Monitored with 613 nm emission, the excitation spectra of BaGd0.9-xMxEu0.1B9O16 consisted of three broad bands peaking at about 242, 208, and 142 nm, respectively. The one at about 242 nm originated from the charge transfer band (CTB) of O2-→Eu3+. The other two were assigned to the absorption of the host, which was overlapped with absorptions among borate groups, f→d transition of RE3+ (RE=Gd, Eu), and the charge transfer transition of O2-→Gd3+. The maximum emission peak was observed at about 613 nm in the emission spectra of BaGd0.9-xMxEu0.1B9O16 under both 254 and 147 nm excitation, which originated from the electric dipole 5D0→7F2 transition of Eu3+. When excited with 254 nm, the integral emission intensity of Eu3+ increased after Al3+ or Sc3+ substituting Gd3+ partly in BaGd0.9Eu0.1B9O16. Under 147 nm excitation, the integral emission intensity of Eu3+ decreased after some Gd3+ was replaced by Sc3+, but increased after adding appropriate Al3+ into BaGd0.9Eu0.1B9O16.  相似文献   

4.
The strong yellow upconversion (UC) light emission was observed in Ho3+/Yb3+co-doped Gd2Mo3O9 phosphor under the excitation of 980 nm diode laser. The phosphors were synthesized by the traditional soli...  相似文献   

5.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

6.
The Y3(AI,Ga)_5O_(12):Ce~(3+),Cr~(3+),Nd~(3+)(YAGG) nano-phosphors with homogeneous particle-size distribution,low aggregation and average crystalline size of about 65 nm were obtained using a modified Pechini method.Only slight aggregation of the crystallites occurs after post-annealing at 1100℃.The intense Ce~(3+)bands in the excitation spectra of the Ce~(3+),Cr~(3+),Nd~(3+)co-doped materials monitoring the Cr~(3+) emission at 690 nm indicate energy transfer from Ce~(3+) to Cr~(3+).Weak Nd~(3+) lines are observed,as well.In addition,the emission of Nd~(3+)at 1060 nm with excitation of Ce~(3+) and Cr~(3+) confirms the Ce~(3+)/Cr~(3+)to Nd~(3+)energy transfer.The short average luminescence decay times for the Ce~(3+) emission indicate the Ce~(3+)/Cr~(3+)to Nd~(3+)energy transfer.Eventually,the Y_3(AI,Ga)_5O_(12):Ce~(3+),Cr~(3+),Nd~(3+) nano-phosphors exhibit persistent luminescence originating from the 4f~3→4f~3 transitions of Nd~(3+) which matches well to the first biological window to be used in bioimaging applications.  相似文献   

7.
Rare earth ions doped gadolinium oxybromide phosphors GdOBr:RE3+ (RE=Eu, Tb, Ce) were synthesized by the method of solid-state reaction at high temperature, and the VUV-VIS spectroscopic properties of the phosphors were systematically investigated. Under the excitation of VUV or UV source, the phosphors doped with Eu3+ and Tb3+ show a bright and sharp emission at around 620 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 544 nm corresponding to the 5D47F5 transition of Tb3+, respectively. For GdOBr:Ce3+, a broader and intense emission spanned 370–500 nm corresponding to the d-f transition of Ce3+ was observed. The excitation spectra were also analyzed.  相似文献   

8.
BaAl12O19:Tb,Ce phosphors were prepared by sol-gel technique, the crystalline structures of samples characterized by XRD, and the luminescence properties and energy transfer between Ce3+ and Tb3+ were investigated. The results indicated that the emission intensity and the excitation wavelength range of Tb3+ increased when Ce3+ was doped. It demonstrated that the Ce3+ added in the BaAl12O19:Tb could deliver energy to Tb3+, and Ce3+ was not luminous by itself. The relative emission intensity of Tb3+ at wavelength of 548 nm was the strongest by Tb3+/Ce3+ ratio of 2:1, when excited at 310 nm, which was the characteristic adsorption wavelength of Ce3+.  相似文献   

9.
A two colour phosphor Ba 2 Mg(BO3)2:Ce3+,Eu2+,Na+ was synthesized using solid-state reaction method.Luminescence of Ba2Mg(BO3)2:Ce3+,Eu2+,Na+ showed 416 and 618 nm emission bands attributed to Ce3+ and Eu2+ emission, respectively. Energy transfer occurred from Ce3+ to Eu2+ through a significant overlap of Eu 2+ excitation spectrum with Ce3+ emission spectrum in Ba 2 Mg(BO3)2. They also showed that under the excitation of UV radiation, bluish or yellowish white light was generated by coupling a broad blue emission band and a red emission band.By combining with green phosphor, Ba2Mg(BO3 ):Ce3+,Eu2+,Na+ phosphor showed potential application for white light-emitting diodes (LEDs).  相似文献   

10.
A broadband blue-emitting Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+)(x=0-0.2) phospho rs were synthesized,which can be used for near-UV pumped white light-emitting diodes(w-LEDs).The crystal structures,photoluminescence pro perties,external quantum efficiency,the rmal stability and application perfo rmance of Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+),by partially substituting Sr~(2+) with Ca~(2+)(x=0-0.2),were studied by various analytical techniques.When the Ca/Sr ratio of Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+) gradually increases,the emission peak of Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+) red-shiftes from 459 to 465 nm,corrected external quantum efficiency increases from 31.8% to 42.9%,and the thermal stability is also improved.The mechanism of the changes of the photoluminescence emission and excitation spectra,external quantum efficiency and thermal stability properties was also investigated in detail.In addition,a w-LED was fabricated by using SrLu_2 O_4:Ce~(3+)(blue),β-sialon:Eu~(2+)(green) and(Sr,Ca)AlSiN_3:Eu~(2+)(red) phosphors combined with a 405 nm near-UV LED chip,and its color rendering index(CRI) reaches 96.0.When Sr_(0.8)Ca_(0.2)Lu_2 O_4:Ce~(3+)is applied as blue phosphor to substitute SrLu_2 O_4:Ce~(3+),the obtained w-LED devices have high luminous efficiency,and CRI greater than 95.0.These re sults show that the Sr_(1-x)Ca_xLu_2 O_4:Ce~(3+) can be potential blue phosphors for n-UV pumped high CRI w-LEDs application.  相似文献   

11.
Tm~(3+) and Dy~(3+) co-doped Ba_(0.05)Sr_(0.95)WO_4 phosphors were synthesized by a low temperature combustion method. The structures of the samples were SrWO_4 phase and were identified by X-ray diffraction. The surface topographies of Ba_(0.05)Sr_(0.91)WO_4:0.01 Tm~(3+) 0.03 Dy~(3+) were tested by scanning electron microscopy. The particles are ellipsoid, and their average diameter is approximately 0.5 μm. The emission spectra of Ba_(0.05)Sr_(0.95)WO_4:Tm~(3+) show a peak at 454 nm which belongs to the ~3 H_6→~1 D_2 transition of Tm~(3+), and the optimum doping concentration of Tm~(3+) ions was 0.01. The emission spectra of Ba_(0.05)Sr_(0.95)WO_4:Dy~(3+) consist of the ~4 F_(9/2)→~6 H_(13/2) dominant transition located at 573 nm, the weaker ~4 F_(9/_2→~6 H_(15/2) transition located at 478 and 485 nm. and the weakest ~4 F_(9/2)→~6 H_(11/2) transition located at660 nm, and the optimum doping concentration of Dy~(3+) ions was 0.05. A white light is achieved from Tm~(3+) and Dy~(3+) co-doped Ba_(0.05)Sr_(0.95)MoO_4 crystals excited at 352-366 nm. With the doping concentration of Tm~(3+) fixed at 0.01, the luminescence of Ba_(0.05)Sr_(0.95)MoO_4:Tm~(3+)Dy~(3+) is closest to standard white-light emissions when the concentration of Dy~(3+) is 0.03; the chromaticity coordinates are(0.321,0.347), and the color temperature is 6000 K.  相似文献   

12.
The cerium (Ce3+) doped yttrium aluminium borate (YAB) phosphor was synthesized by modified solid state reaction. The phosphor's phase purity and its emission properties were studied using powder X-ray diffraction pattern and photoluminescence spectroscopy. The synthesized YAB had rhomobohedral crystal structure. The phosphor had two different excitation and emission spectra. By 325 nm excitation, the phosphor had emission at 373 nm and with 363 nm excitation; the phosphor gave violet-blue emission at 418 nm. The UV emission of the phosphor originated due to Ce3+ ions at the yttrium site and violet-blue emission owing to Ce3+ ions at non-regular sites viz., A13+ and interstitial sites. The emission intensity of the phosphor was enhanced when monovalent ions (K+, Na+, and F) were added as co-dopants. The crucial role of ionic radii of monovalent co-dopants on the emission enhancement of the YAB:Ce3+ phosphor was reported. Thermogravimetric study showed that the YAB possessed high thermal stability at up to 900 ℃.  相似文献   

13.
The Sr2CeO4:Ln3+ (Ln = Eu, Dy) fine phosphor particles were prepared by a facile wet chemical approach, in which the consecutive hydrothermal-combustion reaction was performed. The doping of Ln3+ into Sr2CeO4 has little influence on the structure of host, and the as-prepared samples display well-crystallized spherical or elliptical shape with an average particle size at about 100–200 nm. For Eu3+ ions-doped Sr2CeO4, with the increase of Eu3+-doping concentration, the blue light emission band with the maximum at 468 nm originating from a Ce4+ → O2− charge transfer of the host decreases obviously and the characteristic red light emission of Eu3+ (5D07F2 transition at 618 nm) is enhanced gradually. Simultaneously, the fluorescent lifetime of the broadband emission of Sr2CeO4 decreases with the doping of Eu3+, indicating an efficient energy transfer from the host to the doping Eu3+ ions. The energy transfer efficiency from the host to Eu3+ was investigated in detail, and the emitting color of Sr2CeO4:Eu3+ can be easily tuned from blue to red by varying the doping concentration of Eu3+ ions. Moreover, the luminescence of Dy3+-doped Sr2CeO4 was also studied. Similar energy transfer phenomenon can be observed, and the incorporation of Dy3+ into Sr2CeO4 host leads to the characteristic emission of 4F9/2 → 6H15/2 (488 nm, blue light) and 4F9/2 → 6H13/2 (574 nm, yellow light) of Dy3+. The Sr2CeO4:Ln3+ fine particles with tunable luminescence are quite beneficial for its potential applications in the optoelectronic fields.  相似文献   

14.
A novel orange phosphor Eu3+ doped barium zirconate (BaZrO3) was synthesized by conventional solid state reaction method and its crystal structure and luminescent properties were investigated in this paper. The X-ray diffraction patterns (XRD) showed that simple BaZrO3 phase was obtained. Monitoring at 596 nm, the excitation spectrum consisted of a broad band and a series of narrow bands and the stronger excitation peaks located at 275 and 393 nm, respectively. The emission spectrum excited by 393 nm UV light was composed of four narrow bands. The strongest emission was located at 596 nm. The appropriate concentration of Eu3+ was 0.025 (molar fraction) for the highest emission intensity at 596 nm. The H3BO3 and ammonium were added as flux and the results showed that 2 wt.% NH4F ions was the optimal flux for BaZrO3:Eu3+.  相似文献   

15.
An efficient near-infrared (NIR) downconversion (DC) by converting broadband ultraviolet (UV) into NIR was demonstrated in YVO4:Tm3+,Yb3+ phosphors. The phosphors were extensively characterized using various methods such as X-ray diffraction, photoluminescence excitation, photoluminescence spectra and decay lifetime to provide supporting evidence for DC process. Upon UV light varying from 260 to 350 nm or blue light (473 nm) excitation, an intense NIR emission of Yb3+ corresponding to transition of 2F5/2→2F7/2 peaking at 985 nm was generated. The visible emission, the NIR mission and the decay lifetime of the phosphors of various Yb3+ concentrations were investigated. Experimental results showed that the energy transfer from vanadate group to Yb3+ via Tm3+ was very efficient. Application of the broadband DC YVO4:Tm3+,Yb3+ phosphors might greatly enhance response of siliconbased solar cells.  相似文献   

16.
In the present work,the transparent oxyfluoride glass-ceramic samples containing GdF_3:RE~(3+)(RE=Tb,Eu) nanocrystals(nGCs) were fabricated via controlled heat-treatment of precursor xerogels prepared using a sol-gel method.The formation of GdF_3 nanocrystalline phase from gadolinium(III) trifluoroacetate was verified based on XRD measurements.The average crystal sizes calculated from Scherrer formula were estimated to~10 nm as well as~6 nm for Tb~(3+)-and Eu~(3+)-doped samples,respectively.The optical behavior of prepared sol-gel samples was evaluated based on photoluminescence excitation(PLE) and emission spectra(PL) as well as luminescence decay analysis.Obtained samples exhibit the ~5D_4→~7F_J(J=6-3,Tb~(3+))and the ~5D_0→~7F_J(J=0-4,Eu~(3+)) emission bands recorded within the visible spectral area under excitation at near-UV(393 nm(Eu~(3+)),351,369,378 nm(Tb~(3+))) as well as middle-UV illumination(273 nm(Gd~(3+))).Additionally,based on recorded decay curves,the luminescence lifetimes(τ_m) for the ~5D_4(Tb3+) and the ~5D_0(Eu~(3+))excited states were also evaluated.In general,recorded luminescence spectra and double-exponential character of decay curves for nGCs indicate a successful migration of Tb~(3+) and Eu~(3+) dopant ions from amorphous silicate framework to lowphonon energy GdF_3 nanocrystal phase.  相似文献   

17.
The designed Ce~(3+)-doped alkaline-earth silicate phosphors Ca_mSr_(2-m-n)Ba_nSiO_4:Ce~(3+),Li~+(CSBS:Ce~(3+))were synthesized by a high temperature solid-state reaction. The crystal field splitting and the centroid shift from the free ion energy of 5 d configuration were approximated from the spectrum for Ca_2SiO_4,Sr_2SiO_4 and Ba_2SiO_4 phosphors. The single-phase purity was checked by means of X-ray diffraction. Here,when the doped concentration of Ca~(2+) is less than 80%(m ≤1.6), we report the structural phase transformation from monoclinic system β-Ca_2SiO_4 to orthorhombic system α-Ca_2SiO_4. The phosphors excited by near-ultraviolet(NUV) light at wavelengths ranging from 200 to 400 nm demonstrate a broad asymmetric blue emission band. The emission peak wavelength redshifts firstly from 417 nm of Ca_2SiO_4 to 438 nm of Sr_(0.3)Ca_(1.6)SiO_4, and then blueshifts to 411 nm of Sr_2SiO_4, and the end of 401 nm of Ba_2SiO_4.These results indicate that the tunable blue-emission of the phosphors can be realized through changing the solid solution components, which has a potential use as a blue component for fabricated precision modulation LEDs light sources and auxiliaries of SSC plastics films for different plant growths.We discuss in detail the possible mechanism and energy diagram of the tunable blue luminescence in Ca_mSr_(2-m-n)Ba_nSiO_4:Ce~(3+),Li~+ phosphors.  相似文献   

18.
In this study, the hexagonal NaYF4:Yb3+/Ho3+/Ce3+ microcrystals were synthesized controllably, and upconversion luminescence excited at 940 nm and its application in temperature-responsive anti-counterfeiting are reported. It is clarified that the Ln3+ (Ln = Y + Yb + Ho + Ce) density ratio of bottom plane to side plane in the unit cell can be regulated by Ce3+ doping. It is also proved that the energy transfer of Yb3+ to Ho3+ is responsible for the activation of Ho3+ under 940 nm excitation, while the cross relaxation between Ho3+ and Ce3+ participates in the redistribution of electron population of 5S2/5F4 and 5F5 levels. Both theory and experiment confirm that the intensity ratio of red to green emission (IR/IG) as a function of temperature as an independent variable has good linear characteristics in the temperature range of 300–500 K. Due to the good responsiveness of multicolor luminescence to temperature, the hexagonal NaYF4:Yb3+/Ho3+/Ce3+ with tunable morphology is a promising candidate for advanced temperature-responsive upconversion anti-counterfeiting. Our results provide a new pathway for the controllable synthesis of hexagonal NaYF4 microcrystals as well as the regulation of upconversion luminescence that is excited by wavelengths other than 980 nm and its application in anti-counterfeiting.  相似文献   

19.
Sm3+ -doped fluoroborate ceramics (BaO-ZnO-Al2O3-B2O3-NaF) were fabricated as a potential material in illumination and display. The density, surface modality, microstructure and fluorescence were measured and characterized. The ceramics were well densified without pores and they were proved to be amorphous. Under blue and UV light excitations, the opaque fluoroborate ceramics doped with Sm3+ absorbed the most of excitation radiation and emited intense reddish orange light. The emission spectrum of Sm3+ -doped fluoroborate ceramics under 404 nm excitation consisted of four intense emission bands peaking at 564, 600, 645 and 708 nm, respectively, and the 600 nm reddish-orange emission band was the most intense. Excitation and emission spectra indicated that commercial UV and blue laser diodes, blue and bluish-green LEDs and Ar+ optical laser were powerful pumping sources for the fluoroborate ceramics. The rare earth doped ceramics with various visible emissions were useful for developing new color light sources, fluorescent display devices and UV sensors.  相似文献   

20.
Sr2SiO4:xEu^2+ phosphors were synthesized through the solid-state reaction technique. The crystal phase of Sr2SiO4:xEu^2+ phosphor manipulated by Eu^2+ concentration was studied. The phase transited from β to α' in Sr2SiO4:xEu^2+ phosphor with increasing europium concentration. The single β phase was formed as x≤005 and changed α' phase when x〉0.01. The emission spectrum of the β-Sr2SiO4:Eu^2+ phosphor consisted of a green-yellow broadband peaking at around 540 nm and a blue band at 470 nm under near ultraviolet excitation. The white LEDs by combining near ultraviolet chips with β-Sr2SiO4:Eu^2+ phosphors were fabricated. The luminous efficiency (15.7lm/W) was higher than α'-Sr2SiO4:Eu^2+ phosphor white LED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号