共查询到18条相似文献,搜索用时 46 毫秒
1.
基于差空间的最大散度差鉴别分析及人脸识别 总被引:7,自引:0,他引:7
提出了一种新的基于差空间的最大散度差鉴别特征抽取方法。该方法首先通过构造人脸图像的差空间,部分地消除由于光照条件不同而引起的人脸图像的不稳定性,然后采用最大散度差鉴别准则函数进行最优鉴别特征的抽取,这样从根本上避免了传统的Fisher线性鉴别分析中存在的“小样本问题”。最后,在ORL标准人脸库和Yale人脸库上的实验结果验证了本文算法的有效性。 相似文献
2.
最大散度差鉴别分析及人脸识别 总被引:13,自引:3,他引:13
传统的Fisher线性鉴别分析(LDA)在人脸等高维图像识别应用中不可避免地遇到小样本问题。提出一种基于散度差准则的鉴别分析方法。与LDA方法不同的是,该方法利用样本模式的类间散布与类内散布之差而不是它们的比作为鉴别准则,这样,从根本上避免了类内散布矩阵奇异带来的困难。在ORL人脸数据库和AR人脸数据库上的实验结果验证算法的有效性。 相似文献
3.
提出了一种将分块PCA与最大散度差鉴别分析相结合的人脸识别方法。该方法是先对原始的人脸图像进行分块,然后对分块得到的子图像矩阵采用PCA方法进行特征抽取,从而把原始模式从高维空间映射到较低维空间。接下来再对新模式采用最大散度差线性鉴别分析,这样就避免了对新模式的类内散布矩阵非奇异的要求。在ORL人脸库和Yale人脸库上分别检验了分块PCA与最大散度差鉴别分析相结合的人脸识别方法的识别性能,实验结果表明该方法抽取的鉴别特征有较强的鉴别能力。 相似文献
4.
最大散度差无监督鉴别特征抽取与人脸识别 总被引:1,自引:0,他引:1
最大散度差准则是对Fisher准则的改进,消除了小样本问题,但是该方法是基于整体特征的人脸识另q方?法,没有考虑到样本的局部特性.无监督的鉴别投影(UDP)技术,用于对高维数据进行维数缩减,它同时考虑到样本的局部特征和非局部特征,但是在人脸等高维图像识别的应用中,不可避免地会出现小样本问题.提出一种基于散度差的无监督鉴别特征抽取,避免了局部协方差奇异所产生的问题.在ORL人脸库和AR人脸库上的实验结果验证了该算法的有效性. 相似文献
5.
提出一种基于双向二维最大散度差线性判别分析(Bidirectional 2DMSD)的人脸识别方法.该方法通过在水平和垂直2个方向上顺序执行2次二维最大散度差线性判别分析(2DMSD)运算,将判别特征信息压缩到图像的左上角,大大减少了图像特征的维数;选用二维最小近邻分类法进行分类,计算识别率.在ORL和Yale人脸数据库上的实验结果表明,该方法不仅在识别率上优于最大散度差线性判别分析(MSD),而且在与2DMSD具有相同识别率的情况下,特征维数比2DMSD大大减小,降低了计算复杂度,减少了识别时间,提高了人脸识别效率. 相似文献
6.
提出了一种融合典型相关分析与最大散度差鉴别分析的特征抽取新方法。该方法首先利用典型相关分析方法实现了特征信息的融合,有效地消除了特征之间的信息冗余。然后,通过采用最大散度差鉴别分析方法将训练样本中的类别信息加以充分的利用,从而有效的提高了人脸识别的正确率。最后,在ORL标准人脸库上和Yale人脸库上的实验结果验证了本文算法的有效性。 相似文献
7.
8.
9.
10.
基于保持投影的最大散度差的特征抽取方法 总被引:2,自引:0,他引:2
对非监督鉴别投影(UDP)准则进行修正,并在修正的准则基础上提出基于保持投影的最大散度差的特征抽取方法.该方法利用非局部散度与局部散度之差作为鉴别准则,从而避免UDP线性鉴别分析中所遇到的小样本问题引起的局部散度矩阵奇异的问题.在标准人脸数据库Yale和FERET上进行实验,实验结果表明本文方法的有效性. 相似文献
11.
12.
提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零空间核判别分析算法(null-space kernel discriminant analysis,NKDA)并将其应用于人脸识别.利用核函数将原始样本隐式地映射到高维特征空间后,采用一次瘦QR分解求核类内散布矩阵的零空间鉴别矢量集,最后再进行一次Cholesky分解求得具正交性的核空间鉴别矢量集.与NLDA相比,NKDA具有更好的识别性能且在大样本情况下也能应用.另外,基于NKDA,提出了增量NKDA算法,当增加新的训练样本时能正确地更新NKDA鉴别矢量集.在ORL库、Yale库和PIE子库上的实验结果表明了算法的有效性和效率,在有效降维的同时能进一步提高鉴别能力. 相似文献
13.
由于PCA 和LDA算法存在小样本问题(Smell Sample Size),结合D-LDA 和Kernel,将线性不可分的低维空间映射到高维空间,并借助于"kernel 技巧"克服了维度灾难问题,并且充分的利用曾经被抛弃的有用信息Null-Space.经过才ORL人脸库的实验表明,此方法比PCA,LDA提高了人脸识别的可分性,并有效地解决了小样本问题. 相似文献
14.
基于模糊最大散度差判别准则的聚类方法 总被引:2,自引:0,他引:2
基于最大散度差判别准则提出了一种模糊最大散度差准则,并根据模糊最大散度差准则提出一种聚类方法(fuzzy maximum scatter difference discriminant criterion based clustering algorithm,简称FMSDC).该方法通过迭代优化方法实现聚类的同时还可以实现特征降维.该方法首先在最大散度差判别准则中引入模糊概念;然后通过具体原则设定模糊最大散度差判别准则中的参数η,从而在一定程度上降低了由参数η引起的敏感性;最后分别根据模糊隶属度μik、最优鉴别矢量ω进行聚类和特征降维.实验结果表明,FMSDC方法不但具有基本的聚类功能,而且具有较好的鲁棒性和较强的特征降维能力. 相似文献
15.
尽管基于Fisher准则的线性鉴别分析被公认为特征抽取的有效方法之一,并被成功地用于人脸识别,但是由于光照变化、人脸表情和姿势变化,实际上的人脸图像分布是十分复杂的,因此,抽取非线性鉴别特征显得十分必要。为了能利用非线性鉴别特征进行人脸识别,提出了一种基于核的子空间鉴别分析方法。该方法首先利用核函数技术将原始样本隐式地映射到高维(甚至无穷维)特征空间;然后在高维特征空间里,利用再生核理论来建立基于广义Fisher准则的两个等价模型;最后利用正交补空间方法求得最优鉴别矢量来进行人脸识别。在ORL和NUST603两个人脸数据库上,对该方法进行了鉴别性能实验,得到了识别率分别为94%和99.58%的实验结果,这表明该方法与核组合方法的识别结果相当,且明显优于KPCA和Kernel fisherfaces方法的识别结果。 相似文献
16.
核Foley-Sammon鉴别分析由于可以抽取得到原始样本的非线性正交特征,因此被广泛应用于模式识别的研究领域.但是该算法在具体求解每一个特征矢量过程中均需求解相应的广义特征方程,因此非常耗时.为了克服这一困难,提出了一种新的快速近似算法即核Foley-Sammon鉴别分析,有效地避免了多次求解广义特征方程.在ORL人脸数据库上的实验结果表明,该算法不仅在识别性能上优于核线性鉴别分析,而且在特征抽取速度上优于传统的核Foley-Sammon鉴别分析. 相似文献
17.
抽取最佳鉴别特征是人脸识别中的重要一步。对小样本的高维人脸图像样本,由于各种抽取非线性鉴别特征的方法均存在各自的问题,为此提出了一种求解核的Fisher非线性最佳鉴别特征的新方法,该方法首先在特征空间用类间散度阵和类内散度阵作为Fisher准则,来得到最佳非线性鉴别特征,然后针对此方法存在的病态问题,进一步在类内散度阵的零空间中求解最佳非线性鉴别矢量。基于ORL人脸数据库的实验表明,该新方法抽取的非线性最佳鉴别特征明显优于Fisher线性鉴别分析(FLDA)的线性特征和广义鉴别分析(GDA)的非线性特征。 相似文献
18.
基于最大散度差鉴别准则的自适应分类算法 总被引:6,自引:0,他引:6
首先证明了,当类内散布矩阵非奇异时,特定参数值c0下最大散度差的最优鉴别方向等同于Fisher最优鉴别方向;其次,给出了最大散度差分类算法的识别率随参数C变化的曲线.该曲线通常为一脉冲曲线.随着参数C的增大,识别率也逐渐增大.当参数C增大到c0时,识别率达到最大值.另外,以往的研究成果表明:当类内散布矩阵奇异时,最大散度差鉴别准则逐步逼近大间距线性投影准则.而且,随着参数C的不断增大,最大散度差分类算法的识别率也单调增大并最终稳定到大间距线性投影分类算法的识别率上.为此,我们提出了基于最大散度差鉴别准则的自适应分类算法.新算法可以根据训练样本的特性(类内散布矩阵是否奇异)自动选择恰当的参数C.在UCI机器学习数据库上的6个数据集以及AR人脸图像数据库上的测试结果表明,自适应最大散度差分类算法具有良好的分类性能. 相似文献