首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
磷渣对硅酸盐水泥凝结时间的影响及机理   总被引:2,自引:0,他引:2  
重点研究了磷渣对硅酸盐水泥凝结时间的影响,以及几种常用外加剂硫酸钠、烧石膏和烧明矾石对磷渣水泥凝结时间的改善,并研究了一种以硫铝酸钙为主要矿物组成的合成外加剂的作用。结果表明磷渣的掺量与比表面积对磷渣硅酸盐水泥的缓凝作用非常大,硫酸钠和合成外加剂对磷渣的缓凝的改善效果最佳,烧石膏与烧明矾石的作用不显著。通过对磷渣的缓凝机理的研究,指出了磷渣中的PO43-溶出对水泥的缓凝作用。  相似文献   

2.
吴一鸣  张覃  李龙江 《硅酸盐通报》2019,38(4):1177-118
研究了磷渣在不同掺量下对普通硅酸盐水泥凝结时间及强度的影响,并分别向水泥中掺入易溶性和难溶性的磷酸盐和氟盐,测其凝结时间.研究结果表明:随着磷渣粉掺量的增加,磷渣水泥凝结时间逐渐增长,抗折强度和抗压强度逐渐降低,但后期强度发展迅速,基本能与空白组持平甚至超过空白组;无论是易溶性和难溶性的磷酸盐还是氟盐,在较低的掺量下均能对水泥产生缓凝作用,随着P2 O5和F-当量增加,易溶性的NaH2 PO4和难溶性CaF2、Ca(H2 PO4)2会显著延长水泥的凝结时间,而NaF则不会产生缓凝,甚至会出现速凝,说明磷渣造成缓凝的原因主要与磷渣里面磷和氟的形态及数量有关.  相似文献   

3.
刘江  张建波  王彬  史迪 《水泥》2012,(11):4-6
为确定磷渣硅酸盐水泥的缓凝产物,将硅酸盐熟料粉末与磷渣各自在去离子水中浸泡5h并过滤,再将溶液混合后静置12h获得羟基磷灰石Ca5(PO4)3OH沉淀,由于羟基磷灰石的生成覆盖在水泥颗粒表面,阻碍了水化反应,从而导致磷渣硅酸盐水泥的缓凝;另外,通过掺加5%的硫铝酸盐水泥,能较大程度缓解磷渣硅酸盐水泥的缓凝特征,同时还能提高水泥3d和28d抗压强度.  相似文献   

4.
研究了电石渣掺量,磷渣与电石渣的不同混合粉磨方式以及改性后磷渣掺量对硅酸盐水泥凝结时间和强度的影响.结果表明:改性磷渣等量取代水泥后,凝结时间随磷渣掺量的增加而增加;在相同磷渣掺量下,凝结时间随电石 ,渣掺量增加而减小.对于改性磷渣不同的混合粉磨方式,分别粉磨后在水中浸泡12h后效果最好,当磷渣掺量为30%,电石渣掺量为磷渣的40%时,初凝时间为143min,终凝为232min,略低于纯水泥的凝结时间.  相似文献   

5.
以多种磷渣样品为研究对象,协同多家试验单位共同探讨了水泥强度检验方法采用ISO法后,磷渣水泥的物理性能及其改善途径。研究发现,磷渣掺量由20%增至60%时,水泥抗折和抗压强度均大幅下降,凝结时间随磷渣掺量增加而显著延长。磷渣与矿渣等混合材复掺,可在一定程度上改善水泥性能;而通过提高水泥细度以及在磷渣中掺入少量钙质和硅铝质材料,可明显提高磷渣水泥强度(约10MPa),大大缩短凝结时间(约4h),改善磷渣水泥物理性能。  相似文献   

6.
邵柏泉 《水泥》2020,(4):15-17
钛白粉渣主要成分之一是硫酸亚铁,具有延缓水泥凝结时间的作用。我公司根据当地道路建设工程需要,以钛白粉渣做缓凝剂生产道路基层用缓凝水泥,生产的水泥初凝时间不小于300 min,终凝时间不小于360 min,不大于720 min,强度和线膨胀率等各项指标也均符合当地道路建设工程的设计要求,实际应用反映良好。以钛白粉渣生产道路基层水泥不仅能节约石膏资源,降低生产成本,同时又能缓解当地钛白粉渣的处置压力,保护环境。  相似文献   

7.
赵前  吴优 《水泥》2013,(1):7
研究了在磷渣硅酸盐水泥中掺加少量的钢渣对该水泥性能的影响。结果表明,添加不超过6%的钢渣后,磷渣水泥的抗压强度降低约10%,而水泥初凝时间和终凝时间分别减少了117min和62min以上;当采用钢渣、磷渣加小于3%水共同混合和混磨两种处理方式,水泥初凝时间和终凝时间可继续缩短95min和150min以上,并以混磨方式缩短凝结时间更明显,初凝时间和终凝时间最多分别缩短186min和209min。同时采用陈化处理,可大幅提高该水泥的早期强度,并随陈化时间的延长而增加,而水泥凝结时间则较未陈化时约增加20~40min。  相似文献   

8.
郝向东 《水泥》2019,(5):15
根据工程实际需要,对影响水泥凝结时间的因素进行分析,通过调整细度和掺加磷肥渣调节水泥凝结时间,结合试验结果进行了工业化的生产,成功开发出道路基层用缓凝硅酸盐水泥。  相似文献   

9.
磷建筑石膏(β-HPG)力学性能差,凝结硬化快,已有研究表明用普通硅酸盐水泥(OPC)替代部分β-HPG可改善其力学性能,但对此复合体系工作性能的调控作用及机理研究尚不明确。本文探讨了三种缓凝剂对β-HPG-OPC复合体系性能的影响,通过测试凝结时间和抗压强度来表征性能变化,通过分析水化热曲线、电导率曲线、XRD谱和SEM照片来讨论作用机理。研究结果表明,三聚磷酸钠(STPP)对复合体系基本无缓凝作用,蛋白质类SC缓凝剂(SC)和柠檬酸(CA)的缓凝作用均较好,其中SC对初凝时间的延缓作用较好,CA对终凝时间的延缓作用更佳。CA使二水石膏晶体的形貌发生改变,导致体系抗压强度显著降低;SC对二水石膏晶体的粗化作用使体系形成相对致密的微观结构体,对抗压强度影响较小。研究结果将为β-HPG-OPC复合体系工程应用提供重要参考,有助于推进β-HPG在工程中的高附加值利用。  相似文献   

10.
采用磷渣以20%、40%和60%的比例取代水泥制备磷渣-水泥复合胶凝体系(PSC-X)以及用浓度分别为6 mol/L、8 mol/L、10 mol/L和12 mol/L的NaOH溶液制备碱激发磷渣胶凝体系(PSA-X).测试了两种体系的标准稠度用水(NaOH溶液)量、凝结时间、胶砂抗折强度和抗压强度,并结合XRD、TG-DSC和SEM-EDS等技术手段对其进行了物相组成及微观形貌的分析观测.研究结果发现:磷渣的掺入使PSC-X体系的标准稠度用水量降低了13.6%左右.而凝结时间却明显延长.增加NaOH溶液的浓度,PSA-X体系的标准稠度用液量也随之增加,且均高于PSC-X体系.凝结时间则较PSC-X体系明显缩短.适量掺入磷渣,能明显提高水泥胶砂试件的抗压强度;PSA-X体系的抗压强度发展良好,其强度值随激发剂浓度提高而呈下降趋势.PSC-X体系主要有Ca(OH)2、C-S-H凝胶、AFt和C4AHx等水化产物,而PSA-X体系则是Ⅰ型C-S-H凝胶,还有一定量的方沸石存在.  相似文献   

11.
实验研究了磷渣、萤石、钢渣复合对水泥生料易烧性的影响、结合XRD图谱分析了该硅酸盐水泥熟料矿物组成.结果表明,磷渣、钢渣与萤石的复合矿化剂对煅烧温度的适应性较好,可以有效地改善易烧性,有利于促进C3 S的形成;钢渣与萤石的复合,在煅烧温度为1250℃,保温时间为30min时对易烧性的改善不明显,但可稳定β-C2S.  相似文献   

12.
磷渣资源化综合利用研究进展   总被引:3,自引:0,他引:3  
张垠  曹建新  杨林 《贵州化工》2010,35(2):27-30
总结了国内外近年来磷渣资源化综合利用现状,主要介绍了磷渣在水泥、混凝土、制砖、玻璃、陶瓷等方面的应用,并对磷渣的利用提出了几点建议。  相似文献   

13.
为综合利用生产黄磷时排放的磷渣,采用硬脂酸及硅烷 KH-570 对磷渣进行表面改性,并将改性磷渣作为塑料填料填充到聚乙烯树脂中,研究硬脂酸、硅烷 KH-570 用量对复合材料力学性能的影响。结果表明:磷渣经硅烷 KH-570 改性对复合材料的力学性能的改善优于硬脂酸改性,改性后的磷渣可以作为塑料的新型填料。  相似文献   

14.
铜渣以5%、10%、15%的比例取代水泥制备铜渣-水泥复合胶凝材料.研究铜渣对水泥基胶凝材料标准稠度用水量、凝结时间、净浆抗压强度、胶砂抗折与抗压强度的影响,并利用XRD、TG/DSC和SEM-EDS技术手段分析掺入铜渣后水泥基胶凝材料物相和微观形貌的变化.研究结果表明:铜渣掺入会使水泥胶凝材料的标准稠度用水量增加,凝结时间延长,一定程度上提高水泥胶凝材料的抗折、抗压强度;铜渣-水泥胶凝材料的主要水化产物和水泥胶凝材料类似,并有Fe(OH)3/Fe(OH)2凝胶生成.铜渣-水泥复合胶凝材料微观结构较水泥胶凝材料密实.  相似文献   

15.
郭成洲  朱教群  周卫兵  孙正  陈伟 《硅酸盐通报》2012,31(2):377-381,385
采用NaOH和Na2CO3作为磷渣的激发剂。通过测定磷渣的凝结时间、化学结合水和反应率,研究碱激发剂对磷渣水化程度的影响。利用X射线衍射和扫描电镜分析,研究碱激发磷渣水化产物的物相组成和微观形貌。结果表明,这两种碱激发剂均能加快磷渣的水化速率,其中NaOH对磷渣的激发效果明显优于Na2CO3。NaOH和Na2CO3对磷渣水化过程的影响主要表现为促进磷渣玻璃体溶解,生成更多的C-S-H(B)和托贝莫来石,从而形成致密的结构。  相似文献   

16.
采用XRD分析了掺入钢渣水泥的水化产物,并从标准稠度用水量、凝结时间、强度几方面论证了磨细钢渣对水泥水化性能的影响。结果表明:适度磨细的钢渣能减小水泥的标准稠度用水量,但过度磨细后会增加标准稠度用水量,凝结时间也有类似的结果;钢渣的最佳掺量为10%,此时28d强度达54.5MPa,物相主要为C2SH(C),AFt和Ca(OH)2,养护90d未见Aft向AFm转变。  相似文献   

17.
本文研究水泥增效剂对硅酸盐水泥凝结时间、胶砂强度以及水化程度的影响,并利用XRD和SEM测试手段对水泥增效剂改性水泥的水化产物及硬化浆体的形貌进行了分析.实验结果表明:水泥增效剂的掺入,缩短了水泥浆体的凝结时间,提高了水泥胶砂的抗压强度及抗折强度,促进了硅酸盐水泥早期水化.XRD与SEM分析表明:水泥增效剂的掺入不仅提高了水泥的水化程度,增加了钙矾石的生成量,而且改善了水泥浆体的微观结构.  相似文献   

18.
通过对磷渣水泥凝结时间、力学性能、化学结合水和磷渣反应率的测定,以及XRD和SEM分析,研究了不同掺量的CaO对磷渣水泥的水化性能和微观结构的影响。结果表明,随着CaO掺量的增加,磷渣水泥的强度增加,当CaO的掺量超过2%时,磷渣水泥3d和28d抗压强度下降。CaO对磷渣活性的激发主要发生在磷渣水泥水化早期,掺2%CaO的磷渣水泥28d的磷渣反应率只比1d时增加了4.1%。  相似文献   

19.
周丽娜 《粉煤灰》2010,22(6):26-29
采用工业固体废弃物磷渣作为主原料制备复合材料,研究了氢氧化钠(NaOH)用量(%)、硅酸钠(Na2SiO3)用量(%)、水(H2O)用量(%)、胶集比(C/S)以及压制压力对复合材料性能的影响。研究结果表明以活化磷渣作为胶凝粉体,以原状磷渣作为集料进行复合,并通过湿热养护工艺可制备出综合性能比C60混凝土、天然石材、蒸压砖更优异的复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号