首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为优化设计陶瓷/高强钢/铝合金复合装甲板,研究了陶瓷/钢/铝合金复合结构中陶瓷面板不同区域抗12.7mm穿甲子弹垂直侵彻的性能。通过弹道试验得到装甲的垂直穿深、钢背板的变形和穿孔模式等。结果表明,弹着点对靶板抗弹机理有重要影响,弹着点在中心区和偏心区时,可以形成陶瓷锥,粉碎区完整;当弹着点在边界区时不能形成陶瓷锥,靶板的抗弹能力显著下降。  相似文献   

2.
高华  熊超  殷军辉 《兵工学报》2018,39(8):1565-1575
为研究多层异质复合靶板中装甲钢排布位置,对其塑性变形微观机理及受力状态的影响规律,开展了不同结构方式复合靶板抗侵彻试验。基于金属材料学理论,对复合靶板中装甲钢弹孔塑性变形微观机理进行研究,分析了装甲钢弹坑表面硬度分布及组织演变规律,利用数值模拟研究弹丸侵彻装甲钢过程力学行为与变形机理的内在联系。研究结果表明:波阻抗匹配由高至低,弹丸冲击应力波在层间界面反射形成拉伸波,产生裂纹扩展,降低弹丸侵彻阻力;绝热剪切带内部受温度以及挤压载荷影响,产生高硬度细化马氏体晶粒,抑制塑性变形向内延伸;装甲钢背板强度及刚度越高,对装甲钢塑性变形产生位错运动的阻碍作用越强,有利于提高弹丸开坑阻力。  相似文献   

3.
为研究某型轻质陶瓷/纤维复合装甲(碳化硼陶瓷/碳纤维/芳纶/超高分子量聚乙烯)抗12.7 mm穿甲燃烧弹打击的能力,试验得到了单发12.7 mm穿甲燃烧弹侵彻轻质陶瓷/纤维复合装甲的弹道极限速度。借助LS-DYNA软件建立枪弹侵彻陶瓷复合装甲的有限元模型,采用有限单元-光滑粒子耦合算法(FEM-SPH)计算了其极限穿透速度,分析得到了侵彻过程中陶瓷复合装甲的响应特性,仿真弹道极限速度结果与试验的误差小于5%,验证了模型的合理性。在此基础上进一步研究了靶板的有效防护区域分布和抗双发枪弹重复打击的能力及其影响因素。结果表明:陶瓷复合装甲平面内抗弹性能并不一致,受弹着点位置影响可大致分为中心区、偏心区和边缘区。偏心区整体抗侵彻性能优于中心区,但是背板变形量更大,平均增加了约30%,复合材料层间分层破坏明显;边缘区由于不能形成完整的陶瓷锥,抗侵彻性能最差,不能形成有效防护。靶板抗双发枪弹打击的能力受着靶间距的影响,当枪弹同时着靶时,若着靶间距不小于4倍弹体直径,靶板可以抗双发枪弹重复打击;当枪弹先后着靶时,若着靶间距不小于6倍弹体直径,靶板可以抗双发枪弹重复打击。  相似文献   

4.
为明晰弹着点位置的变化对多孔钢板抗弹性能影响的趋势,应用ANSYS/LS-DYNA分析技术,对多孔钢板在15°法线角抗14.5 mm穿燃弹侵彻进行数值模拟,取得弹着点位置不同时14.5 mm穿燃弹对后效靶的侵彻深度。结果表明,孔中心的防护能力最弱,孔边缘右侧及3孔之间防护能力最强。  相似文献   

5.
穿甲子弹侵彻陶瓷/钢复合靶板试验研究   总被引:4,自引:1,他引:4  
研究了陶瓷/低碳钢复合靶板抗7.62 mm穿甲子弹垂直侵彻的机理和性能.通过弹道试验,得到陶瓷锥底部半径、弹丸的破坏特征和质量损失、低碳钢背板的变形和穿孔模式以及弹着点为陶瓷面板不同区域的极限速度.结果表明,弹着点对靶板抗弹机理和极限速度有重要影响.基于对试验现象的分析和已有的研究结果,建立了弹丸质量损失的简化分析模型,理论计算与试验吻合较好.  相似文献   

6.
研究了不同背板材料的动态防护结构单元防破甲射流侵彻的抗弹效益,重点分析了背板材料性能对抗弹性能的影响关系。结果表明,背板材料的性能对其抗弹效益存在着较大的影响,其中塑性和波阻抗是两个主要影响因素。  相似文献   

7.
为了提高坦克防护装甲的高级别防护能力,应用ANSYS/LS-DYNA有限元软件对射流侵彻胞元结构液态复合装甲的过程进行数值模拟.分析不同的胞元高度和靶板倾角对胞元结构液态复合装甲抗射流侵彻性能的影响,研究液体的径向汇聚和飞溅对射流的干扰情况,以及面板、背板的鼓包变形情况;并通过射流垂直侵彻液态复合装甲的剩余穿深试验,验证了数值计算模型的可靠性.研究结果表明:复合装甲内部液体的径向汇聚和飞溅都会影响射流的稳定性,降低射流的剩余侵彻能力,增加胞元高度和复合装甲的倾角都能降低射流稳定性,可有效提高液态复合装甲的防护性能.  相似文献   

8.
为研究低速破片对于佩戴防弹头盔的人体头部靶标的杀伤效应,基于枪弹侵彻防弹头盔的3D-DIC试验和和头部撞击试验验证复合材料头盔仿真模型和头部有限元模型的准确性,构建6 mm钢球破片侵彻戴防弹头盔人体头部靶标的数值模型,开展破片从正面、侧面和顶部3个方向的侵彻效应数值模拟。研究结果表明:当破片以600 m/s的入靶速度侵彻时,正面、侧面和顶部侵彻弹着点处的瞬态鼓包高度分别为10.2 mm、11.3 mm和11.5 mm,表明有头部支撑头盔的情况下破片侵彻造成的背面鼓包高度接近;正面侵彻过程弹着点底部颅骨应力最大,侧面侵彻颅骨弹着点底部应力最小,破片侵彻造成的颅骨应力均不会超过损伤阈值,表明低速破片侵彻不会造成颅骨损伤;正面、侧面和顶部侵彻造成的颅内压峰值分别为495 kPa、110 kPa和327 kPa,表明在破片侵彻中侧面的防护效果最好,正面和顶部的颅内压峰值可以造成脑损伤。  相似文献   

9.
田超  李志鹏  董永香 《兵工学报》2022,43(5):1144-1154
子弹在陶瓷表面的驻留现象对于装甲防护结构设计具有重要意义。开展陶瓷复合结构抗侵彻特性试验和数值模拟研究,分析侵彻作用过程中弹靶失效破坏、子弹驻留时间及耗能特征,探讨子弹速度、头部形状及背板厚度对驻留效应及复合靶抗侵彻特性的影响规律。研究结果表明:尖头弹中低速侵彻陶瓷复合结构时,子弹头部将在陶瓷表面完全侵蚀,同时耗散大量能量;随着子弹速度的增加,驻留时间减短,子弹动能耗散百分比越低,子弹速度为600 m/s时驻留期间动能耗散百分比可达90%;随着尖头弹锥角增加,驻留时间及驻留期间动能耗散百分比呈先增加后减小趋势,在半锥角取45°时驻留期间能量耗散百分比最大可达80%;随着背板厚度的降低,子弹驻留时间及驻留期间动能耗散降低幅度并不明显。  相似文献   

10.
步枪弹侵彻带软硬复合防护明胶靶标的数值模拟   总被引:3,自引:3,他引:0  
为研究步枪弹撞击带软硬复合防护明胶靶标的作用过程和作用机理,采用显式有限元方法对7.62 mm步枪弹侵彻复合靶标过程进行数值模拟,分析侵彻过程中的典型现象及明胶靶标动态响应。数值计算结果表明:陶瓷锥的形成是由压缩应力波和拉伸应力波共同作用的结果;弹头加速度变化存在明显的分段与拐点,侵彻陶瓷面板过程中,加速度达到最大,侵彻聚乙烯(PE)背板层时,出现第二个拐点;由于防护层存在多个界面,撞击过程中PE背板界面存在速度多峰现象:当弹头运动加速度达到最大时,PE背板界面出现第一个速度峰,明胶界面出现第一个压力峰;当弹头开始侵彻PE背板时,背板层出现第二个速度峰;在步枪弹撞击过程中明胶内压力波传递呈现球形波基本形态,压力峰值随距离增加呈指数衰减。  相似文献   

11.
轻型陶瓷/金属复合装甲抗弹机理研究   总被引:2,自引:0,他引:2  
侯海量  朱锡  李伟 《兵工学报》2013,34(1):105-114
为探讨轻型陶瓷复合装甲抗弹机理,采用弹道冲击试验研究了高速破片冲击下轻型陶瓷/金属复合装甲的冲击响应,对弹体、陶瓷面板及金属背板的破坏现象进行了物理描述和唯象分析,指出了陶瓷面板和金属背板的破坏模式,分析了陶瓷/金属复合装甲的弹道吸能机理及抗弹性能。结果表明,锥形碎裂是陶瓷面板的主要破坏模式,其宏观裂纹主要有:径向、环向及与初始表面法线方向约65°夹角向外扩展的锥形裂纹;此外还会形成与背表面法线间的夹角约为65°的倒锥形断裂面。背板的变形范围、破坏程度及破坏模式均与船用钢靶板有较大区别,当弹速低于靶板弹道极限时,背板变形模式为隆起-碟型变形,当弹速大于靶板弹道极限时,随着陶瓷面板相对厚度的增加,金属背板的破坏失效模式有:剪切冲塞失效、碟型变形-剪切-花瓣型失效、碟型变形-花瓣型失效;弹体动能主要耗散在弹体和背板的破坏与变形;弹道极限速度附近,弹体和金属背板破坏吸能量会由于陶瓷面板的相对厚度不同而不同,但他们的总吸能量可占弹体初始冲击动能的90%以上,而陶瓷面板碎裂及反冲击方向喷射的动能小于弹体初始冲击动能的10%。  相似文献   

12.
为了分析平面夹层炸药对杆式侵彻体侵彻能力的干扰机理,采用三维有限元程序(LS-DYNA)分别模拟了不同入射角度杆式侵彻体侵彻放有平面夹层炸药的靶板过程,并和无炸药情况进行了对比分析,发现侵彻体穿过夹层炸药后,端部出现明显的弯曲现象,弯曲部分的长度随着入射角度增大而增大;弯曲的彻体侵彻主靶板时,弹坑直径增大,侵彻路径发生偏转,对靶板的侵彻能力减小,减小幅度随着入射角度的增大而增大.  相似文献   

13.
苟瑞君  孙丹  张博 《含能材料》2017,25(6):451-458
为研究泡沫铝复合装甲抗侵彻性能,根据应力波传播特性对陶瓷/泡沫铝/铝合金复合结构进行了理论分析。从不同泡沫铝夹芯厚度、相同厚度复合装甲下不同前后板厚度及布置方式和复合装甲倾角三方面研究了该复合装甲能量吸收规律、射流头部剩余速度以及不同倾角下装甲的防护性能。结果表明,泡沫铝作为夹芯层可充分降低复合装甲背板质点速度。同一倾角θ下,随着泡沫铝厚度的增大,复合装甲背板质点速度减小。泡沫铝厚度为2.4 mm时,射流头部剩余速度最低,复合装甲能量吸收最多,抗侵彻性能最优。同一泡沫铝厚度下,随着t_1/t_2值的增大,接触式复合装甲与间隔式复合装甲的射流头部剩余速度均先降低后增加。t_1/t_2=1时,间隔式复合装甲的抗侵彻性能最优。当仅布置方式不同时,间隔式与接触式复合装甲抗射流侵彻性能的差别较小。随着倾角θ的增大,复合装甲的防护性能先增强后降低。倾角为20°时,复合装甲抗射流侵彻性能最优。  相似文献   

14.
为提高在弱约束抛撒条件下子弹的毁伤效果,采用数值模拟与实验相结合的方法对薄壳子弹以不同攻击姿态对金属靶板的扩孔能力进行研究。建立子弹侵彻金属靶板的有限元模型,对不同着角、攻角情况下的穿甲过程进行数值模拟;对子弹各部件过载及装药安定性进行分析,并完成了不同工况下扩孔情况的计算。计算结果与实验结果一致性很好,相对误差小于10%。结果表明,该方法适合于弱约束抛撒条件下子弹对靶板的扩孔能力研究。  相似文献   

15.
李典  朱锡  侯海量  李茂  陈长海 《兵工学报》2016,37(8):1436-1442
为提高近距爆炸破片作用下夹芯结构的毁伤机理和防护能力,采用梯恩梯和预制破片开展了近距爆炸破片作用下芳纶纤维夹芯结构的联合毁伤实验研究。揭示了破片的载荷特性,分析了芳纶纤维夹芯结构中各层结构的破坏模式,探讨了其抗毁伤机理,并与文献\[14\]中典型夹芯结构的防护能力进行了对比和排序。结果表明:夹芯防护结构中芯层起到了毁伤载荷的“中介”转化作用;通过对后面板撞击挤压,把着靶面积小、作用时间短且破坏能力强的破片点载荷转换为作用面积大、持续时间长的压力面载荷,扩大了载荷作用范围。综合材料质量和防护能力来看,气凝胶毡隔温层/高强聚乙烯夹芯结构防护能力优于芳纶纤维夹芯结构。  相似文献   

16.
组合间隙对纤维/陶瓷复合板抗弹性能的影响   总被引:3,自引:0,他引:3  
为了研究纤维/陶瓷复合材料板与装甲钢背板的组合间隙对其抗弹性能的影响,进行了纤维/陶瓷复合材料板抗穿甲弹性能试验,发现组合间隙对复合材料板抗穿甲弹侵彻能力存在一个快速转变区,同时分析了成因机制.研究认为,组合间隙对纤维/陶瓷复合材料板抗弹性能的负面影响是明显的,组合间隙对复合板抗侵彻能力的影响程度与陶瓷片的厚度有关.  相似文献   

17.
杨冬丽  王琳  杨杰  赵登辉 《兵工学报》2014,35(1):96-101
为研究泡沫铝复合结构对应力波的防护能力,利用传统和改进的分离式霍普金森压杆(SHPB)装置对不同相对密度及不同厚度组合的泡沫铝-铝板复合结构进行冲击试验。研究结果表明:泡沫铝作为夹层,可使入射波分多次传到背板,延迟应力波到达时间,降低了应力波强度。随着泡沫铝夹层厚度的增加,应力波衰减效果明显。泡沫铝-铝板复合结构作为面板,应力波的加载方式发生变化,上升沿得到改善,脉冲宽度增大,最大应力幅值降低,同时吸收大量冲击能,是一种良好的应力波防护材料。增大复合结构中泡沫铝厚度,应力波的上升沿时间延长、斜率减小,应力幅值降低,但脉冲宽度变化不大;铝板厚度对应力波传播影响较小。随着泡沫铝相对密度的增加,经泡沫铝-铝板复合结构作用后,应力波的上升斜率减小,最大应力幅值降低,但脉冲宽度和上升沿时间不变。  相似文献   

18.
郭亚周  刘小川  何思渊  王计真  杨海 《兵工学报》2019,40(10):2032-2041
为研究不同弹形撞击下泡沫铝夹芯结构的动力学性能,通过空气炮发射方式分别开展了球形弹、锥头弹和平头弹撞击泡沫铝夹芯板试验。基于非线性动力有限元软件LS-DYNA进行了不同弹形撞击泡沫铝夹芯板的数值仿真,分析了不同弹形、不同速度对夹芯板吸能特性的影响。试验结果与仿真结果一致性较好,结果表明:锥头弹撞击变形模式与球头弹撞击变形模式基本相同,平头弹侵彻过程中产生较严重的冲塞破坏,前面板和后面板呈现撕裂破坏模式,侵彻后夹芯被压实部分泡沫铝粘接在后面板上;锥形弹头部尖锐,弹头与靶的接触区域小、侵彻力大,平头弹的弹头和靶的接触区域大、侵彻力小,但靶面破坏区域大且撞击后效更大,球头弹则居于二者之间;当速度较低时,改善前面板和夹芯板的厚度以及材料性能可以较好地提升泡沫铝夹芯板的性能;当速度较高时,后面板吸能比例逐渐增大,重点改善后面板的厚度和材料性能可以较好地改善夹芯板抗侵彻性能。  相似文献   

19.
使用霍普金森压杆对有机气凝胶的动态力学响应规律进行研究,并对有机气凝胶的破坏机理和防护机理及防护性能进行研究。结果表明:有机气凝胶在动态压缩下表现出非常明显的应变率强化效应,吸能大幅增加;在冲击加载过程中有机气凝胶呈现粉碎破坏,胶体粒子发生熔合的现象;有机气凝胶具有较好的抗弹性能和较高的质量防护系数。  相似文献   

20.
研究可承受炸药爆炸加载的活性破片毁伤威力具有实际应用意义.通过14.5 mm口径弹道枪加载试验分析铝粉与聚四氟乙烯复合结构活性破片撞击不同组合形式下双层靶标毁伤效应,并采取多元回归分析方法建立活性破片对前层板的穿孔直径和后层板的扩孔面积经验公式.结果表明:在800~1400 m/s速度范围内,活性破片撞击前层钢板或铝板...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号