首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Mori  A.U. Patwari  S. Maki 《CIRP Annals》2004,53(1):215-218
A new history of internal pressure in the hydroforming processes of tubes is developed to attain high formability. The effect of improvement of formability by the oscillation of internal pressure in a pulsating hydroforming process of tubes is examined using both finite element simulation and experiment. The deformation behaviour during the hydroforming is greatly affected by the oscillation of internal pressure. For a monotonic history of small internal pressure, the wrinkling was caused by insufficient bulging, whereas the necking and bursting occurred for a monotonic history of large internal pressure. The occurrence of these defects can be avoided by oscillating the internal pressure in the pulsating hydroforming. The improvement of formability in the pulsating hydroforming is due to both low pressure and oscillation of pressure. The effects of the amplitude and cycle number of pressure in the pulsating hydroforming on the deformation behaviour are investigated. It is found the oscillation of internal pressure is effective in preventing the occurrence of defects.  相似文献   

2.
Loading path plays a dominant role in tube hydroforming (THF), and the pulsating loading path has been reported capable of improving the formability of a tube in hydrobulging with axial feeding. As a new THF process, the tube hydroforming with radial crushing (THFRC) is receiving increasing attention; however, knowledge on the process still remains insufficient to extend its application to various other fields. In this study, the experiments of THFRC under both the pulsating and the linear hydraulic pressures were carried out to investigate the deformation behavior. The influences of the amplitude and the frequency of the pulsating hydraulic pressure on the shape precision, wall thickness, and the microstructures of the deformed parts were analyzed. Subsequently, metallographic examinations of the deformed specimens were conducted in an attempt to clarify the relationship between the microstructural evolution and deformation behavior. The mechanism of formability improvement in THFRC by the pulsating hydraulic pressure was explored from the perspective of microstructure. Compared with the linear hydraulic pressure, the pulsating hydraulic pressure could generate a higher shape precision, a more uniform wall thickness, as well as less martensites, and larger grain. The microstructural evolution induced by the pulsating loading path is supposed to contribute to the formability improvement of SUS304 stainless steel tubes.  相似文献   

3.
管材内高压成形新加载方式的研究   总被引:1,自引:0,他引:1  
介绍了管材内高压成形过程中,一种新的内压加载方式--脉冲型加载方式.并通过建立相应的有限元模型,进行了内压脉冲型加载方式下管材内高压成形过程的模拟.通过对不同加载方式模拟结果的比较,分析了脉冲型加载方式对内高压成形中金属流动、变形区变形分布及局部过度减薄等方面产生的影响.模拟结果表明:脉冲型加载在管材内高压成形过程中可以使变形区的变形更加均匀,有利于抑制局部过度减薄、对抑制最后贴膜成形的圆角部位的过度减薄作用明显;脉冲型加载方式使变形更均匀的原因是减小了金属流动阻力,使金属流动更容易.  相似文献   

4.
介绍了塑性加工领域近年来发现的一些提高金属材料塑性变形能力的方法和机理,包括板材增量成形中拉弯伴随成形、局部接触、反复弯曲、交变加载、高静水压力等方式下引起的板材局部增塑机理;波动液压加载状态下管材液压成形能力的提高机理(有轴向进给)、AISI304不锈钢管材的液压成形增塑机理(有、无轴向进给状态下);AISI304管材多次拉伸/卸载状态下的增塑机理。这些增塑机理还存在于其它一些塑性加工工艺中,对其合理运用将有效提高产品成形质量和材料利用率,并减少加工道次,甚至可以产生一些新的塑性加工工艺。  相似文献   

5.
内压对薄壁管充液压弯时的影响   总被引:2,自引:0,他引:2  
失稳起皱和截面畸变是薄壁管弯曲成形过程中的主要缺陷,通过数值模拟和实验的方法,研究了液压支承下管材的弯曲变形行为,进行了从无内压到内压为18MPa的管材充液弯曲成形,分析了充液弯曲成形过程中的内压值对成形的影响,给出了成形后的不圆度和典型点壁厚减薄率的变化规律,结果显示,随着充液压力的增加,管材的截面不圆度逐渐减小,管材内侧壁厚增厚趋势减小,外侧壁厚减薄趋势增大。并根据模拟结果给出了成形后的典型点的应力状态。  相似文献   

6.
针对薄壁管材弯曲成形过程中内壁起皱、外壁拉裂等成形缺陷,采用内胀推弯工艺成形规格为Φ30mm×0.3mm的1Cr18Ni9Ti薄壁管材。有限元模拟了不同内胀压力下,薄壁管成形性能和壁厚分布,并进行了实验研究。结果表明,该工艺可以很好的解决内壁起皱、外壁拉裂等成形缺陷,对生产实践具有一定的指导意义。  相似文献   

7.
Discrete layer forming proposed in this study is a hydroforming process which can selectively deform the outer tube to a desired shape without any deformation of the inner tube by piercing small holes in the inner tube. A three-layered tube is assembled from inner, middle, and outer tubes, from either similar or dissimilar materials, and deforms simultaneously when internal pressure and axial feed are applied to the tube. In special working environments, multi-layered tubes with combined material properties, high strength, and corrosion resistance are required to satisfy conflicting performance requirements. The feasibility of proposed discrete layer forming process of three-layered tube was evaluated by a tube hydroforming experiment and process analysis was performed. An optimal loading path to prevent wrinkling around holes was developed by an analytical model and was experimentally verified. The results show that the proposed discrete layer forming process can be successfully applicable to hollow forming of non-axisymmetric multilayered tubes for structural purposes.  相似文献   

8.
Reduction of weight and increase of corrosion resistance are among the advantageous applications of aluminum alloys in automotive industry. Producing complicated components with several parts as a uniform part not only increases their strength but also decreases the production sequences and costs. However, achieving this purpose requires sufficient formability of the material. Tube hydroforming is an alternative process to produce complex products. In this process, the higher the material formability the more uniform will be the thickness distribution. In this research, tube hydroforming of aluminum alloy (AA1050) at various temperatures has been investigated numerically to study temperature effect on thickness distribution of final product. Also a warm hydroforming set-up has been designed and manufactured to evaluate numerical results. According to numerical and experimental results in the case of free bulging, unlike the constrained bulging, increase of the process temperature causes more uniform thickness distribution and therefore increases the material formability.  相似文献   

9.
管材内高压胀形的实验研究与数值模拟   总被引:3,自引:0,他引:3  
介绍了管材无模轴压胀形的实验,研究表明,适度的褶皱有助于提高成形极限。有限元数值模拟显示,随着内压—轴压匹配模式的改变,内压增长率对褶皱的演化表现出不同的影响效果。针对管坯—模具间摩擦对T型管复合胀形成形性的影响,分别从实验和有限元数值模拟两方面进行了研究。  相似文献   

10.
Sheet hydroforming has gained increasing interest in the automotive and aerospace industries because of its many advantages such as higher forming limitation, good quality of the formed parts and complicated parts can be formed, etc. The main advantage is that the uniform pressure can be transferred to everywhere at the same time. Based on the hydromechanical deep drawing (HDD) with uniform pressure onto the blank, the multi-sheet hydroforming with the very thin middle layer is investigated. Some features of the formed internal, external and middle layers including high drawing ratio, wall thickness distributions, free wrinkling and fracture, etc., are discussed in details. The process parameters’ effect on the forming process and the ways to improve the sheets formability are discussed both for in experiment and simulation. The results from a simulation were in reasonable agreement with those from an experiment.  相似文献   

11.
反胀压力对铝合金球底筒形件充液拉深过程的影响   总被引:4,自引:1,他引:3  
充液拉深工艺是一种先进的板材柔性成形方法。结合航天部件的实际需求,通过数值模拟的方法,对5A06铝合金球底筒形零件的初始反胀充液拉深成形过程进行了研究。应用基于LS-DYNA3D内核的动力显示分析软件eta/Dynaform5.5,分析了液室初始反胀压力与液室压力对零件壁厚分布以及起皱、拉裂等缺陷的影响规律,讨论了反胀压力与液室压力的匹配关系,得到了合理的加载区间。结果表明,采用优化的初始反胀压力和液室压力耦合加载条件,可以有效的抑制零件球底部的过度减薄,控制悬空区的内皱,提高零件成形质量。  相似文献   

12.
Determination of process limits and parameters for hydroforming was conducted applying widely known plasticity, membrane and thin-thick walled tube theories. Analytical predictions were compared with experimental findings. Simple but useful analytical models to predict buckling, wrinkling and bursting as well as axial force, internal pressure, counter force and thinning in tube hydroforming were verified with experimental results.  相似文献   

13.
To manufacture lightweight tube components for aerospace oil circuit systems, an experiment was run to investigate the deformation characteristics on Y-shaped tube hydroforming of 6061 aluminum alloy. Both strain state and metallurgical structure indicate that there are four kinds of prevailing defects during Y-shaped tube hydroforming: bursting, lack of cylindricity, wrinkling, and thinning due to the poor plastic property of 6061 aluminum alloy. The danger of bursting prevails at the early stage of the operation as a result of excessively high internal pressure. In contrast, wrinkling prevails after the middle stage of the operation as a result of excessively axial feeding and cannot be eliminated during subsequent deformation. Lack of cylindricity is mainly because of insufficient axial feeding and internal pressure but can be eliminated by increasing internal pressure. Elongation and compression deformations are originated on protrusion and main pipe of Y-shape tube respectively all the way through the bulging process. Consequently, minimum and maximum thicknesses are at the top of protrusion and the bottom of Y-shape tube respectively, which induces a V-shape borderline of thickness distribution. According to the excessive plastic deformation, microstructure evolution is originated. Crystal grain of protrusion is elongated and its grain size is about 150 μm. In contrast, crystal grain of the middle zone of main tube is refined greatly, which grain size is 50 μm, decreased by 75%. These are useful to improve the component.  相似文献   

14.
为了研究初始反胀高度(IRBH)、反胀压力(IRBP)和液室压力加载路径3个工艺参数对板料充液成形的影响规律,以不锈钢321材料为研究对象,进行板材充液成形工艺过程的分析。首先,利用数值模拟的方法,在有初始反胀(IRB)的充液成形基础上,研究了初始反胀高度与初始反胀压力的组合形式以及液室压力加载路径对制件成形的影响规律,然后分别研究了有无初始反胀的充液成形过程。最后,通过实验的方法进行验证。结果表明:当初始反胀高度为3.75 mm、初始反胀压力为2 MPa时,充液结束时板料的最大减薄率为4.803%,在所有结果中最小;无初始反胀时,零件壁厚最大减薄率为5%;当在充液拉深后期继续加大液室压力时,板料底部发生波动,出现二次变形,与此同时,板料最大减薄率增大。从而验证了合适的初始反胀高度和反胀压力可以减小制件壁厚的最大减薄率,液室压力加载路径不同,零件的壁厚分布也不同。  相似文献   

15.
针对常规的管材液压成形技术需要昂贵的专用设备及模具、生产效率低等不足,开发了一种简单实用、可在冲床或压力机上使用的管材冲击液压成形装置,可用于薄壁金属管材的自然胀形、轴压胀形和异形截面中空件的冲击液压成形。该装置无需外部高压供给系统和专用液压成形设备,通过撞击轴压头挤压容腔中液体的方式来为管材提供液压力和轴压力。通过设计轴压头的行程和调节溢流阀的溢流压力值等来实现最大液压力和轴向进给量的合理匹配,并以304不锈钢毛细管和H65黄铜毛细管为试验管材做了相关试验。研究结果表明:该装置结构简单、操作方便;可实现最大液压力与轴向进给量的协调控制;合理的载荷匹配能显著地提高管材冲击液压成形的成形性能;H65黄铜毛细管破裂时所需的液压力小于304不锈钢毛细管破裂时所需的液压力。  相似文献   

16.
Based on the sidewall wrinkling phenomena in hydroforming of thin-walled Tee-joint, an analytical model for tube wrinkling under double side constraints was proposed to calculate the critical wrinkling stress. The effects of stress ratio, diameter-to-thickness ratio and tube material properties on critical condition of sidewall wrinkling were investigated. It is found that the middle of the main tube side wall is the most dangerous position for wrinkling within hydroforming of thin-walled Tee-joint. At a certain internal pressure, the critical wrinkling stress increases with increasing of ratio of hoop stress to axial stress and material strength coefficients, but decreases with increasing of work-hardening exponent and ratio of diameter to thickness. Through the analytical model combining FEM simulation, the critical wrinkling loading path according to the relation between axial feeding and internal pressure was obtained. Experimental results validates that wrinkle can be avoided if the pressure is above the critical wrinkling loading path, otherwise, wrinkle occurs. It is also verified that the analytical model of critical wrinkling stress is reasonable for the thin-walled Tee-joint hydroforming process.  相似文献   

17.
汽车发动机排气歧管的内高压成形技术   总被引:2,自引:0,他引:2  
研究了Y型三通管的内高压成形工艺过程,分析了成形过程中过渡区起皱及支管破裂等缺陷产生的原因,从而为实际生产中的Y型三通管内高压成形工艺设计提供了相关指导。利用所成形的Y型三通管制造了汽车发动机排气歧管样件,为内高压成形技术在汽车行业的推广应用奠定了理论与实验基础。  相似文献   

18.
A device for applying an axial compressive force proportional to the internal hydraulic pressure in tube bulging was designed, constructed and tested. Using this device, copper tubes of diameter 25.4 mm were bulged. By varying the ratio of the axial compressive force to the hydraulic pressure, the largest ratio for maximum bulging was obtained. At lower values of the ratio, fracture occurred at lower circumferential expansions, whereas at higher values buckling of the tube resulted. The hydraulic pressure and the maximum strains at bursting were measured. Bulging in three stages, with interstage annealing, a circumferential expansion to a diameter of 48 mm was obtained. The maximum bulging possible in each stage was determined together with the hydraulic pressures necessary using the optimum ratio of axial load to the internal pressure. Meridional, circumferential, and thickness strains measured in each stage are presented.  相似文献   

19.
Numerical optimization technique coupled with finite element analysis of the stamping/sheet hydroforming process was developed to predict four possible modes for application of blank holder force (BHF) in multiple-point cushion systems, namely a) BHF constant in space/location and time/stroke, b) BHF variable in time/stroke and constant in space/location, c) BHF variable in space/location and constant in time/stroke and d) BHF variable in space/location and time/stroke. The BHF was predicted by (a) minimizing the risk of failure by tearing (thinning) in the formed part and (b) avoiding wrinkling. The developed technique was applied to predict the BHF to form a) an automotive part (liftgate-inner) from AA6111-T4 aluminum alloy, b) an asymmetric part from aluminum alloy AA5083-H32 by sheet hydroforming process with die (SHF-D) and c) a round cup by sheet hydroforming with punch (SHF-P). Experimental results showed that the FEM based optimization methodology can reduce trial and error effort and is able to predict the blank holder force necessary to form the parts without fracture and wrinkling in the investigated stamping and sheet hydroforming operations.  相似文献   

20.
复杂薄壁微小截面环形件的充液成形技术研究   总被引:1,自引:0,他引:1  
针对具有微小特征尺寸的复杂薄壁环形零件提出了轴向进给与充液胀形相结合的多级充液成形工艺方法.以通用有限元软件ABAQUS为平台建立数值模拟模型,基于建立的模型对复杂环形零件的成形工艺进行模拟,分析了液室压力加载曲线、模具的摩擦系数、开模间距等工艺条件对成形的影响,得出开模间距和液室压力是影响成形结果的主要因素,最终给出...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号