首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A new approach to fabricate long gold nanorods by controlling the volume of the growth solution is reported. Shapes ranging from fusiform nanoparticles to 1D rods were observed to evolve. Increasing the growth solution can control the length of the nanorods. The length of the rods could be extended to 2 µm, and nanorods with aspect ratios of up to ∼70 could be obtained. Moreover, X‐ray absorption spectroscopy (XAS) was used to elucidate the growth mechanism of gold nanorods. The gold ions were directly reduced to gold atoms by ascorbic acid during the reaction, and the gold atoms were deposited on the surface of gold seeds, which were introduced into the reaction. Extended X‐ray absorption fine structure (EXAFS) confirmed the growth of gold and the environment around Au atoms during the reaction. XAS is expected to have wide applications in the growth of gold and other related materials. © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

2.
Optical imaging of objects within highly scattering media, such as tissue, requires the detection of ballistic/quasi-ballistic photons through these media. Recent works have used phase/coherence domain or time domain tomography (femtosecond laser pulses) to detect the shortest path photons through scattering media. This work explores an alternative, angular domain imaging, which uses collimation detection capabilities of small acceptance angle devices to extract photons emitted aligned closely to a laser source. It employs a high aspect ratio, micromachined collimating detector array fabricated by high-resolution silicon surface micromachining. Consider a linear collimating array of very high aspect ratio (200: 1) containing 51/spl times/1000 /spl mu/m etched channels with 102-/spl mu/m spacing over a 10-mm silicon width. With precise array alignment to a laser source, unscattered light passes directly through the channels to the charge coupled device detector and the channel walls absorb the scattered light at angles >0.29/spl deg/. Objects within a scattering medium were scanned quickly with a computer-controlled Z axis table. High-resolution images of 100-/spl mu/m-wide lines and spaces were detected at scattered-to-ballistic ratios of 5/spl times/10/sup 5/: 1, with objects located near the middle of the sample seen at even higher levels. At >5/spl times/10/sup 6/: 1 ratios, a uniform background of scattered illumination degrades the image contrast unless recovered by background subtraction. Monte Carlo simulation programs designed to test the angular domain imaging concept showed that the collimator detects the shortest path length photons, as in other optical tomography methods. Furthermore, the collimator acts as an optical filter to remove scattered light while preserving the image resolution. Simulations suggest smaller channels and longer arrays could enhance detection by >100.  相似文献   

3.
High-output-power operation of 1.55-μm-wavelength distributed-feedback (DFB) lasers with a novel mass-transport grating (MTG) structure which is composed of InAsP buried with InP are reported. To improve high output power characteristics, we have investigated the influence of the width of the active layer on the light output power and the spectral linewidth at high injection current. It is confirmed that the increase of the active layer width is effective to realize high output power and to reduce the linewidth power product. The fabricated lasers show high single-longitudinal-mode output power of 180 mW, which is the highest value reported for 1.55-μm DFB lasers. They also exhibit narrow spectral linewidths less than 0.3 MHz and low noise characteristics of -159 dB/Hz. Moreover, we have obtained the mean time to failure of longer than 105 h with a lifetime test over 200 h at 50°C  相似文献   

4.
The homogeneous broadening of exciton absorption spectral lines in semiconductor quantum dots (QDs) in the strong confinement regime is studied theoretically. It is shown that the term linear in nuclear displacements in the difference of the phonon Hamiltonians of the ground and optically excited states does not lead to the zero-phonon line (ZPL) broadening. The ZPL width is contributed by the term quadratic in nuclear displacements associated with short-living optical phonons. This contribution is estimated for CdSe nanocrystals (NCs) and found to be much less than the linewidth observed in recent experiments. We conclude that the experimentally observed linewidth is due to the longitudinal lifetime associated with the exciton relaxation to the dark state. The shape of spectral wings originating from the exciton interaction with long-living acoustic phonons is studied at various temperatures for a CdSe NC embedded in a glass matrix.  相似文献   

5.
We have developed an L-band tunable distributed feedback laser array (TLA) with a new design to reduce the spectral linewidth. A wide wavelength tuning range of $sim$40 nm is obtained with a high fiber output power of 20 mW and a high side-mode suppression ratio of ≫50 dB in the TLA module. A narrow linewidth of less than 580 kHz is achieved over the entire tuning range. Furthermore, we investigated the causes of linewidth variation. We found that a TLA with a longer cavity is more tolerant to external feedback, which reduces the variation in linewidth.   相似文献   

6.
The MnWO4 nanorods were successfully synthesized by surfactant assisted ultrasonics method and characterized its structural (XRD), morphological (SEM) electrical (solid state impedance) and electrochemical (CV) properties. The X-ray diffraction patterns inferred the formation of highly crystalline monoclinic structure of MnWO4. The formation of nanorods with the aspect ratios of 30–40?nm were reveals from SEM image. The maximum d.c. electrical conductivity was found to be 4.40?×?10?5?S/cm at 570°C for MnWO4 nanorods prepared by surfactant assisted ultrasonic method. The quasi-rectangular behavior of cyclic voltammogram inferred the supercapacitive behavior of the prepared MnWO4 nanorods.  相似文献   

7.
Ytterbium-doped silica fibers exhibit very broad absorption and emission bands, from ~800 nm to ~1064 nm for absorption and ~970 nm to ~1200 nm for emission. The simplicity of the level structure provides freedom from unwanted processes such as excited state absorption, multiphonon nonradiative decay, and concentration quenching. These fiber lasers therefore offer a very efficient and convenient means of wavelength conversion from a wide variety of pump lasers, including AlGaAs and InGaAs diodes and Nd:YAG lasers. Efficient operation with narrow linewidth at any wavelength in the emission range can be conveniently achieved using fiber gratings. A wide range of application for these sources can be anticipated. In this paper, the capabilities of this versatile source are reviewed. Analytical procedures and numerical data are presented to enable design choices to be made for the wide range of operating conditions  相似文献   

8.
用普通陶瓷工艺制备小线宽石榴石多晶铁氧体材料,用压缩空气吹磨法和研磨膏研磨法对石榴石小球表面进行了抛光,按GB9633(等同采用IEC60556)标准)在9.37GHz下测量了小线宽石榴石铁氧体材料的铁磁共振线宽ΔH。讨论了ΔH与抛光粉粒度的关系,比较了压缩空气法与研磨法的抛光效果。在7?30℃环境温度区间,测量了小线宽材料的ΔH随温度的变化。  相似文献   

9.
This article describes the fabrication of a microelectromechanical system (MEMS) mirror array and mirror‐drive electrodes with high‐aspect‐ratio gold walls that reduce electrical interference in a wavelength‐selective switch (WSS). The MEMS mirror array, in which a lot of closely spaced adjacent mirrors are electrostatically operated, can be fabricated with a high yield by encapsulating the mirrors with an organic film that protects them from process damage. The gold walls with a high‐aspect ratio are formed in the narrow space between adjacent mirror‐drive electrodes by using thick‐multilevel interconnection technology. Because of these walls between adjacent electrodes, each MEMS mirror operates with low electrical interference. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
提出一种复合微动空间目标窄带成像方法。由于窄带雷达在目标检测和跟踪等方面的优势,窄带雷达被广泛用于空间目标探测中。对空间微动目标,微动产生时变多普勒调制,蕴含了目标的重要结构信息,通过对时频图像应用逆约旦变换方法可获取目标各散射点的位置,实现窄带成像。窄带成像降低了对雷达带宽的要求,在空间目标探测上具有优势。然而,在实际探测场景中,目标运动表现为微动和平动的复合叠加,使窄带成像方法失效。在建立复合微动空间目标雷达回波模型的基础上,分析目标的时变多普勒调制特性,提出一种复合微动窄带成像方法,该方法首先基于时频相关系数估计微动周期,利用多普勒相消方法去除平动影响,估计目标平动参数,进而实现平动补偿,最后基于逆约旦变换方法实现窄带成像。所提方法不受目标平动影响,能有效实现复合微动空间目标的窄带成像。  相似文献   

11.
基于腔微扰理论,提出了一种微波铁氧体铁磁共振有效线宽的测量方法和测量系统。系统主要包括高Q圆柱谐振腔、可编程电磁铁,计算机控制的矢量网络分析仪等。测试过程采用ABA方法提高谐振腔谐振频率f和Q的测量精度,采用Math CAD进行数据处理和曲线拟合,有效线宽测量结果具有较高精度。在9.8GHz时样品直径3mm、厚度1mm的多晶YIG圆片高场有效线宽为0.45±0.25Oe,接近单晶YIG的内禀线宽。  相似文献   

12.
13.
Operation of an efficient continuous-wave (CW) thulium-doped fiber laser emitting at wavelength, λ=2.31 μm is reported. The fiber laser parameters are optimized with a view to ultimately producing a compact and efficient laser source for optical absorption based gas sensing. A number of fiber laser configurations are investigated to assess their suitability for narrow linewidth, tunable fiber laser operation emitting around λ=2.3 μm, which is a wavelength region of significant importance for hydrocarbon gas monitoring. Tuning ranges of 140 nm and linewidths of less than 210 MHz have been demonstrated with lasers with bulk external tuning grating. Preliminary hydrocarbon gas sensing investigation confirm the potential of this source for detection of ppb gas concentrations  相似文献   

14.
由于水介质及水下颗粒的散射吸收作用,使得水下成像图像存在分辨率与对比度低,细节特征模糊,颜色失真等问题。针对这些问题,该文提出基于光场成像的水下图像清晰度增强算法,根据暗原色先验理论和单尺度的Retinex理论建立水下散射成像模型对成像图像的清晰度进行增强处理,并利用光场成像的多视角特性对散射成像模型的图像增强效果进行优化,进一步提高水下成像图像的质量。实验结果表明,两种理论构建的水下散射模型和多视角优化算法可以有效的提高水下成像图像的质量。  相似文献   

15.

Objectives

To evaluate a new denoising method for MR spectroscopic imaging (MRSI) data based on selection of signal-related principal components (SSPCs) from principal components analysis (PCA).

Materials and methods

A PCA-based method was implemented for selection of signal-related PCs and denoising achieved by reconstructing the original data set utilizing only these PCs. Performance was evaluated using simulated MRSI data and two volumetric in vivo MRSIs of human brain, from a normal subject and a patient with a brain tumor, using variable signal-to-noise ratios (SNRs), metabolite peak areas, Cramer-Rao bounds (CRBs) of fitted metabolite peak areas and metabolite linewidth.

Results

In simulated data, SSPC determined the correct number of signal-related PCs. For in vivo studies, the SSPC denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared to the original data and two other methods for denoising. The method also performed very well in preserving the spectral linewidth and peak areas. However, this method performs better for regions that have larger numbers of similar spectra.

Conclusion

The proposed SSPC denoising improved the SNR and metabolite quantification uncertainty in MRSI, with minimal compromise of the spectral information, and can result in increased accuracy.
  相似文献   

16.
We show that the methodology based on the generalized inverse scattering transform (IST) concept provides a systematic way to discover the novel exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain or absorption. The fundamental innovation of the present approach is to notice that it is possible both to allow for a variable spectral parameter with new dependent variables and to apply of the famous "moving in time focuses" concept of the self-focusing theory to the IST formalism. We show that for nonlinear optics this algorithm is a useful tool to design novel dispersion managed fiber transmission lines and soliton lasers. Fundamental soliton management regimes are predicted  相似文献   

17.
This paper reports on a numerical approach to model the field fluctuations, spectral lineshape and linewidth in semiconductor lasers. The approach is based on numerical solution of the laser rate equations augmented by Langevin noise sources that account for fluctuations in the lasing field. The paper newly examines contributions of intensity and frequency noises to the spectral characteristics of the lineshape and its linewidth over a wide range of injection current. The model is applied to InGaAsP lasers emitting in a wavelength of 1.5 μm as the most representative light sources in optical communication systems. Accuracy of approximated models of calculating linewidth from low‐frequency components of the frequency noise is checked. Effect of non‐linear gain suppression on the lineshape is also explored. The spectral lineshape promotes and the linewidth decreases as the laser is injected far from the near‐threshold region. The lineshape changes mainly with changes in the frequency noise spectrum while the linewidth is sensitive to variation in the low‐frequency levels of both intensity and frequency noises. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Terahertz quantum cascade lasers (QCLs) have been used together with a monolithic planar Schottky diode receiver to study the heterodyne mixing between dual internal modes of a QCL and between a single mode of a QCL and a known molecular line from a molecular gas laser. Dual-mode mixing shows that the intrinsic linewidth of a free-running QCL is les30 kHz . Mixing against a molecular laser line gives a high precision measurement of a QCL's absolute frequency and can show transient turn-on behavior in a pulsed QCL.  相似文献   

19.
We have discussed the impact of molecular imaging on clinical and preclinical medicine. We have presented the potential problems of delivering the effective therapeutic dose and the properties that can help contribute to the drug efficacy. The rationale for the design of new antiangiogenic agents that can be used for imaging and therapy was presented. Finally, results from imaging and targeted nanoparticle based therapies were presented. In vivo imaging of angiogenic tumors using anti-alpha(v)beta3 -targeted polymerized vesicles composed of the murine antibody LM609 attached to NPs labeled with the MR contrast agent gadolinium in the V2 carcinoma model in rabbits. MRI studies using this targeted contrast agent revealed large areas of alpha(v)beta3 integrin expression in tumor-associated vasculature that conventional MRIs failed to show. Other investigators have used microemulsions conjugated to an antibody targeted against alpha(v)beta as imaging agents. These materials also show contrast enhancement of tumor vasculature undergoing angiogenesis. Other markers, such as the PECAM-1 (CD-31), VCAM-1 (CD54) and VEGF receptor (flk-1), have been shown to be upregulated on tumor endothelium and associated with angiogenesis but have not been used in imaging studies. Furthermore, by modification of the NPs, we were able to use this imaging agent as an antiangiogenic gene delivery system. The results from these studies are very promising and are being further pursued.  相似文献   

20.
太赫兹(THz)无损检测技术具有非破坏性、非电离和非接触的优点,在航空航天领域纤维增强复合材料无损检测中得到了较快的发展和应用。在碳纤维复合材料层合板的4个不同深度(0.225、0.450、0.675、0.900 mm)插入聚四氟乙烯作为人工缺陷,采用太赫兹时域光谱和成像系统对其进行成像和光谱分析,探讨太赫兹波辐射下缺陷的成像效果和光谱特性。研究结果发现,在0.25~2.0 THz频率范围内,太赫兹反射成像可以成功检测出碳纤维复合材料中不同深度缺陷:随着缺陷深度的增加,太赫兹频域成像信号和光谱信号随缺陷深度线性增大,吸收系数成像信号和光谱信号随缺陷深度线性减小;随着频率的增加,缺陷的功率谱密度先增大后减小,吸收系数缓慢增大。该结果可以为碳纤维复合材料缺陷深度的可视化和定量化分析提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号