首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Pt/ZrO2 catalysts for the water–gas shift (WGS) were promoted with various amounts of vanadia. Analyses by XRD, N2 adsorption, Raman, and UV–vis DRS showed that vanadia is present below monolayer coverage as monovanadate and polyvanadate, with the former dominating at lower loadings, and that following monolayer formation, VO5 species appear, with the eventual generation of V2O5 and ZrV2O7 for a vanadia weight loading of 13%. Though in all cases vanadia induced an enhancement in WGS activity, the best catalyst, that contained 3 wt.% of vanadia, gave a rate that was nearly double that of the unpromoted Pt/ZrO2. That superior global activity probably results from the monovanadate that is the main species at low loadings. It is believed that monovanadate promotes the WGS by rendering the support's surface more oxidizing through its VOZr bonds.  相似文献   

2.
The influence of vanadium oxide loading in the supported VOx/Al2O3 catalyst system upon the dehydrated surface vanadia molecular structure, surface acidic properties, reduction characteristics and the catalytic oxidative dehydrogenation (ODH) of ethane to ethylene was investigated. Characterization of the supported VOx/Al2O3 catalysts by XPS surface analysis and Raman spectroscopy revealed that vanadia was highly dispersed on the Al2O3 support as a two-dimensional surface VOx overlayer with monolayer surface coverage corresponding to 9 V/nm2. Furthermore, Raman revealed that the extent of polymerization of surface VOx species increases with surface vanadia coverage in the sub-monolayer region. Pyridine chemisorption-IR studies revealed that the number of surface Brønsted acid sites increases with increasing surface VOx coverage and parallels the extent of polymerization in the sub-monolayer region. The reducibility of the surface VOx species was monitored by both H2-TPR and in situ Raman spectroscopy and also revealed that the reducibility of the surface VOx species increases with surface VOx coverage and parallels the extent of polymerization in the sub-monolayer region. The fraction of monomeric and polymeric surface VOx species has been quantitatively calculated by a novel UV–Vis DRS method. The overall ethane ODH TOF value, however, is constant with surface vanadia coverage in the sub-monolayer region. The constant ethane TOF reveals that both isolated and polymeric surface VOx species possess essentially the same TOF value for ethane activation. The reducibility and Brønsted acidity of the surface VOx species, however, do affect the ethylene selectivity. The highest selectivity to ethylene was obtained at a surface vanadia density of 2.2 V/nm2, which corresponds to a little more than 0.25 monolayer coverage. Below 2.2 V/nm2, exposed Al support cations are responsible for converting ethylene to CO. Above 2.2 V/nm2, the enhanced reducibility and surface Brønsted acidity appear to decrease the ethylene selectivity, which may also be due to higher conversion levels. Above monolayer coverage, crystalline V2O5 nanoparticles are also present and do not contribute to ethane activation, but are responsible for unselective conversion of ethylene to CO. The crystalline V2O5 nanoparticles also react with the Al2O3 support at elevated temperatures via a solid-state reaction to form crystalline AlVO4, which suppresses ethylene combustion of the crystalline V2O5 nanoparticles. The molecular structure–chemical characteristics of the surface VOx species demonstrate that neither the terminal VO nor bridging VOV bonds influence the chemical properties of the supported VOx/Al2O3 catalysts, and that the bridging VOAl bond represents the catalytic active site for ethane activation.  相似文献   

3.
The catalytic properties of undoped and K-doped (K/V atomic ratio of 0.5) Al2O3-supported vanadia catalysts (4.5 wt% of V2O5) for the oxidation ofn-butane and ethane were studied. Isolated tetrahedral V5+ species are mainly observed in both undoped and K-doped samples. The incorporation of potassium decreases both the reducibility of surface vanadium species and the number of surface acid sites. Potassium-free vanadium catalysts show a high selectivity during the oxidative dehydrogenation (ODH) of ethane but a low selectivity during the ODH ofn-butane. However, the presence of potassium on the vanadium catalysts strongly influences their catalytic properties, increasing the selectivity to C4-olefins fromn-butane and decreasing the selectivity to ethene from ethane. The role of the acid-base characteristics of catalysts on selectivity to ODH reactions is proposed.On leave from the Department of Industrial Chemistry and Materials, V. le Risorgimento 4, 40136 Bologna, Italy.  相似文献   

4.
A series of π-conjugated poly(aryleneethynylene)s (PAEs) containing two or three different arylene units in the main chain have been prepared by palladium-catalyzed coupling reactions. The PAEs consist of 2,5-dihexyloxy-1,4-phenylene diethynylene (–CC–C6H2(OC6H13)2-p-CC–; C6H13 = hexyl) units with alternating arylene (–Ar–) units. Various kinds of arylenes, including 9,10-dihydrophenanthrene-2,7-diyl (Phen), pyridine-2,5-diyl (Py), thiophene-2,5-diyl (Th), anthracene-9,10-diyl (Ant), and 2,1,3-benzothiadiazole-4,7-diyl (BTdz), are used as the –Ar– units. The obtained PAEs were soluble in organic solvents by virtue of the attached hexyloxy side chains, and were characterized by NMR, IR, GPC, and UV–vis absorption and photoluminescence (PL) spectroscopy. The cooperation of different polymer segments induces variations in the electronic structure of the PAEs that show π–π* absorption peaks in the range of 380–530 nm and PL emission peaks in the range of 430–610 nm with quantum yields of 5–55% in their solutions. The UV–vis and PL peaks of the PAEs shifted to a longer wavelength in films and in colloidal solutions, indicating the occurrence of intermolecular electronic interactions by aggregation. In Ant-containing PAEs, the PL of the polymer chain was entirely replaced with a red-shifted PL emission assignable to the Ant segments due to intramolecular energy transfer.  相似文献   

5.
The direct synthesis of three-dimensional (3-D) cubic V-KIT-6 was prepared using a Pluronic P123 triblock copolymer as the structure directing agent and n-butanol as the co-surfactant. The material obtained therein showed a very high specific surface area 1000 m2/g with pore diameters that could be tuned within a narrow size distribution of 5.7–6.0 nm. After calcination, Raman and UV–vis analysis revealed the presence of V5+ species in a highly dispersed state with much less crystalline V2O5 formation. 51V-NMR analysis showed that the vanadium species interacted directly with the silica framework in an almost symmetrical tetrahedral environment. NH3-TPD analysis for V-KIT-6 showed a wide distribution of acid sites at temperatures ranging from 200 to 800 °C. The calcined V-KIT-6 materials showed excellent catalytic activity in the direct oxidation of cyclohexane using dilute aqueous H2O2 as the oxidant.  相似文献   

6.
Three kinds of mesoporous silicas with hexagonal arrangement of mesopores, i.e. MCM-41, SBA-3 and SBA-15, were synthesised and characterised by XRD, N2 adsorption, FTIR, UV–vis and ESR techniques. A choice of these silicas was determined by the use of various siliceous precursors, templates and synthesis conditions. Their catalytic activity was estimated in the oxidation of methanol (gas phase) and cyclohexene (liquid phase) as well as in acid-basic test reactions (propanol–2 decomposition and acetonylacetone (AcAc) cyclisation). It was evidenced that the sources of siliceous, nature of templates and the preparation conditions (pH) play a crucial role in the formation of active species. The E′ and NBOHC (Si–O) and iron and chloride impurities were estimated as active centres for both oxidation reactions.  相似文献   

7.
Vanadium-containing mesoporous HMS catalysts have been prepared and characterized for the oxidative dehydrogenation (ODH) of propane. It is demonstrated that the vanadium supported HMS catalysts exhibit a much higher catalytic activity than the literature results obtained over the vanadium supported MCM-41 catalysts in the ODH of propane. The improved catalytic activity of the V-HMS catalysts has been attributed to the presence of high concentration of well-dispersed vanadium species on the surface of the mesoporous HMS materials.  相似文献   

8.
Several single phasic MoVO-based mixed oxides, all of which have a layer structure in the direction of c-axis and a high dimensional arrangement of metal octahedra in a–b plane, were synthesized by hydrothermal method and their catalytic performance in the selective oxidation of propane to acrylic acid were compared in order to elucidate structure effects on catalytic property and roles of constituent elements. It was clearly demonstrated that the catalyst with the particular arrangement of MO6 (M = Mo, V) octahedra forming slabs with pentagonal, hexagonal and heptagonal rings in (0 0 1) plane of orthorhombic structure was exclusively superior both in the propane oxidation activity and in the selectivity to acrylic acid to the other related Mo- and V-based layer oxide catalysts consisting of either pentagonal or hexagonal ring unit. The role of constituent elements was clarified by the comparison of catalytic performance of MoVO, MoVTeO and MoVTeNbO, all of which have the same orthorhombic structure. Mo and V, which were indispensable elements for the structure formation, were found to be responsible for the catalytic activity for propane oxidation. Te located in the central position of the hexagonal ring promoted the conversion of intermediate propene effectively, resulting in a high selectivity to acrylic acid. The introduced Nb occupied the same structural position of V and the resulting catalyst clearly showed the improved selectively to acrylic acid particularly at high conversion region, because the further oxidation of acrylic acid to COx was suppressed.  相似文献   

9.
Hexagonal mesoporous silica (HMS) catalysts post-synthetically doped with vanadia oxo-species were characterized by means of XRD, UV-Vis spectroscopy, H2-TPR and studied in oxidative dehydrogenation of propane (ODH). The relationship between catalytic activity in ODH and the presence of different vanadia-oxo species (monomeric, oligomeric and oxide-like species) was suggested. Monomeric VOx species are responsible for high catalytic activity and selectivity, oligomeric species containing V-O-V bond are active but non-selective to propene and oxide-like VOx particles are significantly less active and selective.  相似文献   

10.
Thin films of organic pigments were prepared at higher than pH 1 by the contact plating method using an anionic surfactant (AZNa, first figure of this article (part c) (n = 4)) containing an azobenzene moiety. The effects of hydrophilic group of the surfactants on the rate of following reaction of the reduction product were studied by cyclic voltammetry. The positive shift of the reduction peak potential of AZNa compared to those of cationic and non-ionic surfactants was ascribed to higher rate of following reaction of reduction product due to the presence of the anionic hydrophilic group of the surfactant. The present investigation revealed that the anionic hydrophilic group accelerates the cleavage of the NN bond of the azobenzene group. This phenomenon enabled us to prepare the organic thin film at higher pH condition.  相似文献   

11.
A series of Ru(III) tetrahydro-Schiff base complexes (denoted as Ru[H4]-Schiff base with Schiff base = salen, salpn and salcn, see Scheme 1) were encapsulated in the supercages of zeolite Y by flexible ligand method. The prepared catalysts were characterized by X-ray diffraction, diffuse reflectance UV–Vis spectroscopy, Infrared spectroscopy, elemental analysis, as well as N2 adsorption techniques. It was shown that upon encapsulation in zeolite Y, Ru(III) tetrahydro-Schiff base complexes exhibited higher activity for the hydrogenation of benzene than the corresponding Ru(III)-Schiff base complexes. This indicates that hydrogenation of the CN bond of the Schiff base ligands led to a modification of the coordination environment of the central Ru(III) cations. The stability of the prepared catalysts has also been confirmed against leaching of the complex molecule from the zeolite cavities, as revealed by the result that no loss of catalytic activity was observed within three successive runs with regeneration.  相似文献   

12.
Hierarchically mesoporous-macroporous N-doped titania materials were fabricated by the thermal treatment of spontaneously formed hierarchical mesoporous-macroporous titanias with urea solution, in order to extend their photocatalytic applications from ultraviolet to visible-light range. The resultant meso-macroporous TiO2−xNx exhibited a bicrystalline (anatase and brookite) framework with high surface area and large porosity. The content of the doped nitrogen increased with the urea solution and the nitridation temperature, and the band gaps narrowed from 3.14 to 2.48 eV. The formation of OTiN bonds in the meso-macroporous TiO2−xNx was confirmed by the XPS and FT-IR spectra. The photocatalytic activity was evaluated by the photodegradation of methyl orange and rhodamine B under UV and visible-light irradiation, respectively. The significant improvement of photocatalytic activity for water contaminant decomposition under both UV and visible-light irradiation was observed, which is due to the incorporation of nitrogen into the titania lattice and the presence of the hierarchical meso-macroporous structure.  相似文献   

13.
Two hybrid compounds based on {Mo5O16} ribbon-like chains, [M(3-pt)2(Mo5O16)]·H2O (M = Co, Mn) (1 and 2) {3-pt = 5-(3-pyridyl)-tetrazole}, have been hydrothermally synthesized and characterized by single crystal X-ray diffraction. Three-dimensional Mo/O/MII/tetrazole frameworks of the title compounds are constructed from 1D infinite ribbon-like [Mo5O16]2− chains covalently linked through [M(3-ptz)]2+ fragments via OM and NMo coordinate bonds. It is noteworthy that the isostructural compounds contain an unprecedented 3D bimetallic oxide network with 16-membered wheel clusters in which two parallel interdigitated stacks of 3-pt ligands are trapped. Remarkably, the title complexes represent the first two examples of the solid materials containing {Mo5O16} ribbon-like chains.  相似文献   

14.
Vanadium oxide grafted on mesoporous silica SBA-15 has been synthesized using a controlled grafting process. Its structure has been thoroughly investigated using different characterization techniques, including N2-physisorption, X-ray diffraction, transmission electron microscopy (TEM), Raman spectroscopy, H2 temperature-programmed reduction, X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS). The spectroscopic results revealed that under dehydrated conditions, the grafted vanadium domains are highly dispersed on the SBA-15 surface, composed predominately of isolated VO4 units with distorted tetrahedral coordination. The suggested (SiO)3VO sites on the silica surface include one short bond (~1.54 Å) and three long bonds (1.74 Å). Methanol oxidation was used as a chemical probe reaction to examine the catalytic properties of these catalysts. At low vanadium loading, the vanadium species grafted on the surface show structural properties similar to those of vanadium-incorporated MCM-41 catalyst. However, the present mesoporous V-SBA-15 catalysts in the oxidation of methanol to formaldehyde show remarkable catalytic performance compared with that of VOx/SBA-15 catalysts synthesized through a conventional wet impregnation method, which has been attributed to the homogeneous dispersion and uniformity of the catalytic vanadium species achieved on the SBA-15 support with large pore diameter and surface area. The acidic properties of V-SBA-15 was investigated by pyridine temperature-programmed desorption, which indicated the existence of both Lewis and Brönsted acid sites of the surface.  相似文献   

15.
The aminolysis of epoxides over novel solid catalysts (Brönsted-acidic SBA-15 functionalized with propylsulfonic acid and Lewis-acidic Ti-MCM-41) is reported. The acidic properties of these catalysts were determined by FTIR spectroscopy and temperature-programmed desorption of pyridine and NH3, respectively. The mesoporous solid acids of the present study are reusable and exhibit significantly higher catalytic activities than known catalysts for opening of the oxirane ring with nitrogen (aromatic and aliphatic amines)-containing and oxygen (alcohols)-containing nucleophiles. A range of β-amino alcohols with high regioselectivity and stereoselectivity were synthesized. Adsorption studies as well as the sigmoid shape of the conversion-versus-time plots show that the epoxide and amine compete for adsorption on the acidic sites (SO3H or Ti4+) on the catalyst surface. Epoxide adsorption and activation on acid sites are the more critical processes. Catalytic activity decreases with increasing basicity of the amines and/or the alcohol, as well as the dielectric constant of the solvent.  相似文献   

16.
The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (NH2 or SO3) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic CO stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH)2 clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH)2 clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH)2 clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.  相似文献   

17.
The catalytic performance in the oxidehydrogenation (ODH) of propane of vanadium oxide catalysts supported on gallium oxide, VOx/Ga2O3, with vanadium coverages lower or near the theoretical monolayer has been studied as a function of the vanadium content and compared with those of other known effective V–M–O (M=Mg, Ca) catalysts. Catalyst activity was very high and increased with the increase of vanadium loading in the range studied, while the selectivity trend was similar for the studied catalysts, excepting that with the lower V content. FT-Raman and 51V solid state NMR spectroscopies show that for coverages below the theoretical monolayer vanadium atoms are in tetrahedral co-ordination either in isolated or polymeric species, while the onset of vanadia formation is detected above that coverage. Interestingly, these catalysts show an one order of magnitude higher area-specific rate, similar initial olefin selectivity and slightly higher selectivity decrease with the increase of conversion than the best VMgO catalyst. This is due to the high intrinsic activity of isolated tetrahedral vanadium species. The combination of these factors produces an enhanced olefin productivity of V–Ga–O catalysts.  相似文献   

18.
19.
The steam reforming of phenol towards H2 production was studied in the 650–800 °C range over a natural pre-calcined (air, 850 °C) calcite material. The effects of reaction temperature, water, hydrogen, and carbon dioxide feed concentrations, and gas hourly space velocity (GHSV, h−1) were investigated. The increase of reaction temperature in the 650–800 °C range and water feed concentration in the 40–50 vol% range were found to be beneficial for catalyst activity and H2-yield. A similar result was also obtained in the case of decreasing the GHSV from 85,000 to 30,000 h−1. The effect of concentration of carbon dioxide and hydrogen in the phenol/water feed stream was found to significantly decrease the rate of phenol steam reforming reaction. The latter was probed to be related to the reduction in the rate of water dissociation as evidenced by the significant decrease in the concentration of adsorbed bicarbonate and OH species on the surface of CaO according to in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)-CO2 adsorption experiments in the presence of water and hydrogen in the feed stream. Details of the CO2 adsorption on the CaO surface at different reaction temperatures and gas atmospheres using in situ DRIFTS and transient isothermal adsorption experiments with mass spectrometry were obtained. Bridged, bicarbonate and unidentate carbonate species were formed under CO2/H2O/He gas mixtures at 600 °C with the latter being the most populated. A substantial decrease in the surface concentration of bicarbonate and OH species was observed when the CaO surface was exposed to CO2/H2O/H2/He gas mixtures at 600 °C, result that probes for the inhibiting effect of H2 on the phenol steam reforming activity. Phenol steam reforming reaction followed by isothermal oxygen titration allowed the measurement of accumulated “carbonaceous” species formed during phenol steam reforming as a function of reaction temperature and short time on stream. An increase in the amount of “carbonaceous” species with reaction time (650–800 °C range) was evidenced, in particular at 800 °C (4.7 vs. 6.7 mg C/g solid after 5 and 20 min on stream, respectively).  相似文献   

20.
Novel crystalline MoVO oxide was employed as the catalyst in the aerobic oxidation of alcohols to the corresponding carbonyl compounds. Reactions were mainly conducted at 353 K in pure oxygen or air (1 atm). The selectivities for benzaldehydes were more than 95% in all cases. The conversions of benzyl alcohols varied from 10% to 99% depending on the substituent. A Hammett plot gave a moderate ρ-value of −0.249 (r2 = 0.98), suggesting that the reaction processes may involve hydride abstraction. The oxidation of primary alkanols afforded aldehydes, and secondary alcohols were mainly dehydrated to olefins. It was found that the conversion of linear alkanols decreased with the length of alkanols. Kinetic analysis showed that catalytic reaction rate was first-order dependent on the concentrations of substrate and of catalyst. The apparent activation energy was estimated to be 45.7 kJ mol−1. Catalytic reactions took place on the 6- or 7-member rings on the ab basal plane, where highly dense unsaturated metal cation centers and oxygen anion might serve as catalytic active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号