首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landsat-5 TM reflective-band absolute radiometric calibration   总被引:3,自引:0,他引:3  
The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.  相似文献   

2.
Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per year in the ETM+ gain for bands 1-4 and 8 and less than 0.5%/year for bands 5 and 7. However, most of this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on vicarious calibrations and observations of "invariant sites", hyperarid sites of the Sahara and Arabia. Weighted average slopes determined from these datasets suggest changes of 0.0% to 0.4% per year for bands 1-4 and 8 and 0.4% to 0.5% per year for bands 5 and 7. Absolute calibration of the reflective bands of the ETM+ is consistent with vicarious observations and other sensors generally at the 5% level, though there appear to be some systematic differences.  相似文献   

3.
The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) has been and continues to be radiometrically characterized using the Image Assessment System (IAS), a component of the Landsat-7 Ground System. Key radiometric properties analyzed include: overall, coherent, and impulse noise; bias stability; relative gain stability; and other artifacts. The overall instrument noise is characterized across the dynamic range of the instrument during solar diffuser deployments. Less than 1% per year increases are observed in signal-independent (dark) noise levels, while signal-dependent noise is stable with time. Several coherent noise sources exist in ETM+ data with scene-averaged magnitudes of up to 0.4 DN, and a noise component at 20 kHz whose magnitude varies across the scan and peaks at the image edges. Bit-flip noise does not exist on the ETM+. However, impulse noise due to charged particle hits on the detector array has been discovered. The instrument bias is measured every scan line using a shutter. Most bands show less than 0.1 DN variations in bias across the instrument lifetime. The panchromatic band is the exception, where the variation approaches 2 DN and is related primarily to temperature. The relative gains of the detectors, i.e., each detector's gain relative to the band average gain, have been stable to /spl plusmn/0.1% over the mission life. Two exceptions to this stability include band 2 detector 2, which dropped about 1% in gain about 3.5 years after launch and stabilized, and band 7 detector 5, which has changed several tenths of a percent several times since launch. Memory effect and scan-correlated shift, a hysteresis and a random change in bias between multiple states, respectively, both of which have been observed in previous Thematic Mapper sensors, have not been convincingly found in ETM+ data. Two artifacts, detector ringing and "oversaturation", affect a small amount of ETM+ data.  相似文献   

4.
As part of the Earth Observer 1 (EO-1) Mission, the Advanced Land Imager (ALI) demonstrates a potential technological direction for Landsat Data Continuity Missions. To evaluate ALI's capabilities in this role, a cross-calibration methodology has been developed using image pairs from the Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) and EO-1 (ALI) to verify the radiometric calibration of ALI with respect to the well-calibrated L7 ETM+ sensor. Results have been obtained using two different approaches. The first approach involves calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors. The second approach uses vicarious calibration techniques to compare the predicted top-of-atmosphere radiance derived from ground reference data collected during the overpass to the measured radiance obtained from the sensor. The results indicate that the relative sensor chip assemblies gains agree with the ETM+ visible and near-infrared bands to within 2% and the shortwave infrared bands to within 4%.  相似文献   

5.
In Brazil, the increase of the application of quantitative approaches in the natural resources studies using remote sensing technology has required knowledge about the radiometric conditions of remote sensors as the Thematic Mapper (TM) and the Enhanced TM Plus, for instance. The establishment of a correlation between radiometric data and biophysical and geophysical ones has become a frequent need in the Brazilian remote sensing community, and it has increased the demand of calibration coefficients in order to transform digital numbers to physical values like radiance and reflectance. Since the China-Brazil Environmental Remote Sensing Satellite became a reality, the necessity to perform calibration campaigns increased significantly. Following Price and other researcher's suggestions, an in-flight absolute calibration of the Landsat-5 data was carried out in the Salar de Uyuni, Bolivia. It was only possible to determine calibration coefficients for bands TM2, TM3, and TM4 due to the saturation of band TM1 and surface moisture conditions that impacted the TM5 and TM7. The methodology applied here seemed to be sufficient to determine valid calibration coefficients for orbital sensors.  相似文献   

6.
7.
红外焦平面探测器阵列由于探测器工艺、环境冲击和长时间工作等因素将引起探测器响应的漂移,很大程度影响了热成像系统的成像质量。对于红外测温热像仪来说,会大大降低其出厂定标的准确性。针对红外辐射定标,考虑到探测器响应的非线性,在前期搭建的基于U形边框黑体视场光阑的红外成像系统基础上,研究了基于U形边框黑体光阑的三点定标修正方法,并与两点辐射定标方法进行了比较。实际定标测试实验结果表明:在25~65 ℃范围内,三点定标修正后的最大绝对误差和平均误差分别为0.126 6 K和-0.048 8 K,较原始定标的结果有明显的精度提升,说明三点定标修正方法算法有效,但三点定标修正与两点定标修正的结果相差不大。因此,一般情况下两点辐射定标修正方法足以适应辐射定标应用。  相似文献   

8.
In recent decades, radar and optical satellite imagery have been used for evaluating flooding extent. In this paper, a straightforward technique based on the sequential use of the spectral-temporal principal component analysis, logical filtering, and image segmentation integrated with the digital elevation model was developed as a decisional support tool for the allocations of the resource destined for the flooded areas. The mapping technique was first applied to the catastrophic event that occurred in the Piemonte Region (Italy) in November 1994, which was the worst event of the past century for that region, with 44 casualities and over 2000 homeless. Next, it was applied to the Obion/Forked Deer inundation that occurred in Tennessee (U.S.) between November and December 2001, in which heavy damage to the infrastructure was reported. Two Landsat-5 Thematic Mapper (path 194, row 28/29) and two Landsat-7 Enhanced Thematic Mapper Plus (path 23, row 35) images were processed, two of them collected before and two after the events. The method proposed proved to be an effective approach for evaluating flood extent and for assessing the damage produced by the flooding. An overall accuracy of 85.6%, a user accuracy of 87.5%, and a producer accuracy of 97.5% were achieved, and an agreement of 83% between ground measures and remotely sensed data in the estimation of flood water volumes was also achieved on a regional scale.  相似文献   

9.
Four years of Landsat-7 on-orbit geometric calibration and performance   总被引:2,自引:0,他引:2  
Unlike its predecessors, Landsat-7 has undergone regular geometric and radiometric performance monitoring and calibration since launch in April 1999. This ongoing activity, which includes issuing quarterly updates to calibration parameters, has generated a wealth of geometric performance data over the four-year on-orbit period of operations. A suite of geometric characterization (measurement and evaluation procedures) and calibration (procedures to derive improved estimates of instrument parameters) methods are employed by the Landsat-7 Image Assessment System to maintain the geometric calibration and to track specific aspects of geometric performance. These include geodetic accuracy, band-to-band registration accuracy, and image-to-image registration accuracy. These characterization and calibration activities maintain image product geometric accuracy at a high level-by monitoring performance to determine when calibration is necessary, generating new calibration parameters, and verifying that new parameters achieve desired improvements in accuracy. Landsat-7 continues to meet and exceed all geometric accuracy requirements, although aging components have begun to affect performance.  相似文献   

10.
Based on purely spectral-domain prior knowledge taken from the remote sensing (RS) literature, an original spectral (fuzzy) rule-based per-pixel classifier is proposed. Requiring no training and supervision to run, the proposed spectral rule-based system is suitable for the preliminary classification (primal sketch, in the Marr sense) of Landsat-5 Thematic Mapper and Landsat-7 Enhanced Thematic Mapper Plus images calibrated into planetary reflectance (albedo) and at-satellite temperature. The classification system consists of a modular hierarchical top-down processing structure, which is adaptive to image statistics, computationally efficient, and easy to modify, augment, or scale to other sensors' spectral properties, like those of the Advanced Spaceborne Thermal Emission and Reflection Radiometer and of the Satellite Pour l'Observation de la Terre (SPOT-4 and -5). As output, the proposed system detects a set of meaningful and reliable fuzzy spectral layers (strata) consistent (in terms of one-to-one or many-to-one relationships) with land cover classes found in levels I and II of the U.S. Geological Survey classification scheme. Although kernel spectral categories (e.g., strong vegetation) are detected without requiring any reference sample, their symbolic meaning is intermediate between those (low) of clusters and segments and those (high) of land cover classes (e.g., forest). This means that the application domain of the kernel spectral strata is by no means alternative to RS data clustering, image segmentation, and land cover classification. Rather, prior knowledge-based kernel spectral categories are naturally suitable for driving stratified application-specific classification, clustering, or segmentation of RS imagery that could involve training and supervision. The efficacy and robustness of the proposed rule-based system are tested in two operational RS image classification problems.  相似文献   

11.
针对传统的辐射定标与校正方法存在的问题,研究提出了一种基于U形边框黑体视场光阑的红外成像辐射定标与校正技术。该技术可在不遮挡中心视场的情况下完成动态非均匀校正,因为边框黑体的温度是可控的,所以在非均匀校正的基础上可以进行红外成像系统的动态辐射定标,以修正热成像系统出厂辐射定标的漂移。算法执行时,将边框黑体视场光阑分别在高、低温下伸入视场,与原始辐射定标数据进行对比,计算出辐射定标的修正参数,修正补偿原始辐射定标查找表,减小动态辐射定标器的体积和质量,并避免辐射标定时对成像视场的遮挡。设计并搭建了基于U形边框黑体光阑的实验平台,该平台上的成像实验表明:校正效果明显,辐射定标修正后的测温误差小于0.5 K。  相似文献   

12.
This paper addresses the estimation of adjacency effect in ground spectrum and Landsat-5 pixels. The adjacency effect influences the digital number value of a pixel by adding surface surrounding scatter signals and path scatter signals at the sensor. Along with the increasing use of satellite high-resolution imagery and quantitative remote sensing, much attention has been paid to the experimental measurement and estimation of the natural phenomena of adjacency effects. Based on the theory of radiation transfer, a procedure was designed to measure the reflectance from the surface target materials and the materials in a box which is 1.5 m above the surface to avoid upwelling reflectance. At every 3/spl times/3 sites, the measurement was carried out during 10:30 to 13:30 of local time at the Guanting Remote Sensing Test Site in north Beijing. The results show that the adjacency effect becomes stronger from visible, near infrared to shortwave infrared wavelength; the adjacency effect weakens with the increase of distance between testing site. At last, the adjacency effect of Landsat-5 image was corrected, and the quality of the resulting image was improved.  相似文献   

13.
With 2378 infrared spectral channels ranging in wavelength from 3.7-15.4 /spl mu/m, the Atmospheric Infrared Sounder (AIRS) represents a quantum leap in spaceborne sounding instruments. Each channel of the AIRS instrument has a well-defined spectral bandshape and must be radiometrically calibrated to standards developed by the National Institute of Standards and Technology. This paper defines the algorithms, methods, and test results of the prelaunch radiometric calibration of the AIRS infrared channels and the in-flight calibration approach. Derivation of the radiometric transfer equations is presented with prelaunch measurements of the radiometric accuracy achieved on measurements of independent datasets.  相似文献   

14.
提出了对非均匀场景同一区域成像的卫星姿态调整及基于直方图匹配的线阵CCD非线性相对辐射定标方法.当在轨卫星需要执行相对辐射定标任务时,首先计算初始偏流角并调整卫星偏航角进入在轨定标成像模式;然后在定标成像过程中控制卫星偏航角,使得线阵CCD阵列的所有像元能够依次对同一区域成像;最后基于直方图匹配方法建立高精度非线性相对辐射定标模型.仿真实验给出了不同姿态对应的定标成像情况下的偏航角调整大小与调整周期,并分析了引起偏流角误差的因素及其对偏流角的不确定性.该方法既不需要地面均匀定标场等,也不需要统计分析大量在轨图像数据;且每一轨都可以执行定标任务,避免了卫星不同轨数据之间的不稳定性所带来的定标源自身不可靠问题.  相似文献   

15.
介绍利用大洋浮标数据和NCEP再分析资料对FY-2C红外分裂窗通道进行在轨绝对辐射定标的方法,并选择了2006年10个时次的卫星数据进行辐射定标试验.将利用这种方法获得的定标结果与FY-2C卫星数据产品中提供的定标查找表进行比较分析,结果表明两套不同的定标系数反演的大气层顶(TOA)亮度温度的主要差别集中在云顶、冰雪覆盖区域等低温像元;而在常温区的陆表和海表像元定标结果差别较小,反演的TOA亮温差在2K左右.提出的替代定标方法可以极大地提高定标频次,为实现FY-2C红外分裂窗通道的实时绝对辐射定标提供了重要的方法基础.  相似文献   

16.
胡冬梅  刘泉  于林韬  朱一峰 《红外与激光工程》2016,45(5):517004-0517004(4)
为了标定液晶相位可变延迟器(Liquid Crystal Variable Retarder,LCVR)的相位延迟特性,在25℃、405 nm波长下,利用搭建的测量装置采集了141组实验样本,其中71组样本为训练集,70组样本为预测集,利用最小二乘支持向量机(Least Squares Support Vector Machines,LSSVM)和支持向量机(Support Vector Machines,SVM)算法建立LCVR相位延迟量和驱动电压相关数学模型。实验表明,GASVR、PSOSVR、LSSVM方法下最大波长偏差分别为0.013 6、0.013 7和0.004 5,均方误差提高两倍,通过比较,说明该模型能快速准确地预测LCVR工作范围内全部波长、全部电压值下的相位延迟。该方法可作为LCVR相位延迟特性标定的有效手段。  相似文献   

17.
美国陆地卫星Landsat-7上搭载的专题扫描仪(ETM+)上的扫描行校正器(SLC,scan line corrector)在2003年5月31日发生故障,导致Landsat-7影像出现坏行,难以正常使用。为了使剩余的78%的数据能够被利用,美国航空航天局(NASA)组织专家研究解决这一问题的方案,我们与NASA密切配合,探索了5种修复方法。经过对这5种方法的尝试与试验,其中自适应局部回归(ALR)算法修复后的图像完整没有明显的修复边界,达到理想的效果。本文介绍了ALR算法的基本原理、流程,并将该算法分别应用在美国和北京的缺行图像修复中,取得良好的效果。  相似文献   

18.
针对运动目标到达时差(Time Difference-of-Arrival,TDOA)/到达频差(Frequency Difference-of-Arrival,FDOA)定位中的接收站定位误差问题,提出了基于多校准站的TDOA/FDOA定位方法,有效降低接收站定位误差的影响,并推导了该方法的克拉美罗下限(Cramér-Rao Lower Bound,CRLB)。理论分析表明,采用多校准站法能有效降低CRLB,提高目标定位精度。同时,当校准站自身定位存在误差时,也将影响对接收站的校准和目标的定位精度。通过仿真实验定量分析了采用多校准站法对定位精度的改善程度。  相似文献   

19.
FY-2扫描辐射计是中科院上海技术物理研究所研制的我国风云二号静止气象卫星的主要载荷之一,为确定其响应率,中国科学院安徽光机所对FY-2(05)扫描辐射计进行了辐亮度法定标和Langley法定标,并对定标所用的5种反射率的漫反射板均匀性、反射比、BRDF性能进行了检测,给出了基于辐射标准传递的辐亮度定标的基本原理和数据处理方法,以及辐亮度定标和Langley法定标结果,综合不确定度为6.0%~6.4%。同时,提出了独立于相对光谱响应函数的基于标准探测器的反射比定标法,并与辐亮度法和Langley法进行了对比分析,其定标结果具有一致性。  相似文献   

20.
The power-series expansion method has been used to compute the exact cutoff frequencies of TM modes in step-index fibers for various values of relative refractive index difference (Δ), ranging from 0.005 to 0.1. The difference between the propagation constants of TM and TE modes, intermodal delay between TM and TE modes, and their variation with respect to the relative refractive-index difference has also been calculated. Numerical results show that for a fiber withDelta = 0.005the intermodal delay between TM01and TE01modes is of the order of 1.5 ps/km at frequencies far away from cutoff, whereas it is of the order of 0.62 ns/km forDelta = 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号