首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium sorption on glutaraldehyde‐crosslinked chitosan was studied in fixed‐bed column systems. Sorption performances were controlled mainly by the presence of competitor anions in the solution: The presence of sulfate, chloride, or nitrate (to a lesser extent) significantly decrease sorption properties. Although the influence of other operating conditions such as particle size, column depth, and flow velocity on sorption breakthrough cannot be completely neglected, palladium sorption is less significantly controlled by these parameters than for the sorption of other metal ions, owing to fast mass transfer and weak intraparticle diffusion control. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 153–165, 2001  相似文献   

2.
3.
This paper evaluates the potential use of a locally available organic soil amendment as a low‐cost adsorbent. The removal of cadmium from aqueous solutions was studied by means of kinetic, batch and fixed‐bed experiments. Batch experiments were conducted to evaluate the process kinetics and the removal equilibrium over a broad pH range. Pseudo‐second‐order kinetics and Freundlich equilibrium parameters were obtained. Six column experiments were carried out at different flow‐rates and feed concentrations. Breakthrough curves showed higher metal retention than expected from the batch adsorption isotherms. Column modelling assuming rate‐controlled pore diffusion was successfully performed. The adsorption process was reversed, regenerating the columns by eluting the cadmium using 0.1 mol dm?3 hydrochloric acid. The high retention capacity together with the favourable structural characteristics indicated that this material could be used as an effective and low‐cost adsorbent for treatment of wastewaters containing heavy metals. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
5.
Functionalised SBA‐15 mesoporous silica with polyamidoamine groups (PAMAM‐SBA‐15) was successfully prepared with the structure characterised by X‐ray diffraction, nitrogen adsorption–desorption, Fourier transform infrared spectra and thermogravimetric analysis. PAMAM‐SBA‐15 was applied as adsorbent for Cu(II), Pb(II) and Cd(II) ions removal from aqueous solution. The effects of the solution pH, adsorbent dosage and metal ion concentration were studied under the batch mode. The Langmuir model was fitted favourably to the experimental data. The maximum sorptive capacities were determined to be 1.74 mmol g?1 for Cu(II), 1.16 mmol g?1 for Pb(II) and 0.97 mmol g?1 for Cd(II). The overall sorption process was fast and its kinetics was fitted well to a pseudo‐first‐order kinetic model. The mean free energy of sorption, calculated from the Dubinin–Radushkevich isotherm, indicated that the sorption of lead and copper, with E > 16 kJ mol?1, followed the sorption mechanism by particle diffusion. The adsorbent could be regenerated three times without significant varying its sorption capacity. A series of column tests were performed to determine the breakthrough curves with varying bed heights and flow rates. The breakthrough data gave a good fit to the Thomas model. Maximum sorption capacity of 1.6, 1.3 and 1.0 mmol g?1 were found for Cu(II), Pb(II) and Cd(II), respectively, at flow rate of 0.4 mL min?1 and bed height of 8 cm, which corresponds to 83%, 75% and 73% of metallic ion removal, respectively, which very close to the value determined in the batch process. Bed depth service time model could describe the breakthrough data from the column experiments properly. © 2012 Canadian Society for Chemical Engineering  相似文献   

6.
7.
BACKGROUND: This paper evaluates the use of several biosorbents for Cu removal from aqueous solutions in the absence and presence of ethylenediaminetetraacetic acid (EDTA). The objective was to determine the applicability of the sorption process after conventional physicochemical wastewater treatment, or as primary treatment, replacing the physicochemical process. RESULTS: Fixed‐bed experiments were performed at Cu influent concentrations of 2 and 20 mg dm?3 and EDTA doses between 0 and 10 mg dm?3. At low Cu concentration without EDTA, Cu uptake capacity followed the order Posidonia oceanica > chitosan > chitin > Scharlau AC > Darco AC, with a maximum, at C/C0 = 0.2, of 23.2 mg g?1. In the presence of EDTA, Cu was detected in the effluent from the beginning of the operation, except for the activated carbons and chitosan at low EDTA doses. At higher EDTA doses, the activated carbons showed the best performance. Uptakes at Cu concentration of 20 mg dm?3 without EDTA were 51.6 (Posidonia oceanica) and 41.4 mg g?1 (chitosan) at C/C0 = 0.2. CONCLUSION: A sequence of one fixed bed with Posidonia oceanica followed by another with Scharlau AC should be an alternative to Cu precipitation, with Cu effluent concentration lower than 0.5 mg dm?3 for more than 350 pore volumes. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
9.
Utilizing volatile renewable energy sources (e.g., solar, wind) for chemical production systems requires a deeper understanding of their dynamic operation modes. Taking the example of a methanation reactor in the context of power‐to‐gas applications, a dynamic optimization approach is used to identify control trajectories for a time optimal reactor start‐up avoiding distinct hot spot formation. For the optimization, we develop a dynamic, two‐dimensional model of a fixed‐bed tube reactor for carbon dioxide methanation which is based on the reaction scheme of the underlying exothermic Sabatier reaction mechanism. While controlling dynamic hot spot formation inside the catalyst bed, we prove the applicability of our methodology and investigate the feasibility of dynamic carbon dioxide methanation. © 2016 American Institute of Chemical Engineers AIChE J, 63: 23–31, 2017  相似文献   

10.
11.
A multidimensional heterogeneous and dynamic model of a fixed‐bed heat exchanger reactor used for CO2 methanation has been developed in this work that is based on mass, energy and momentum balances in the gas phase and mass and energy balances for the catalyst phase. The dynamic behavior of this reactor is simulated for transient variations in inlet gas temperature, cooling temperature, gas inlet flow rate, and outlet pressure. Simulation results showed that wrong‐way behaviors can occur for any abrupt temperature changes. Conversely, temperature ramp changes enable to attenuate and even fade the wrong‐way behavior. Traveling hot spots appear only when the change of an operating condition shifts the reactor from an ignited steady state to a non‐ignited one. Inlet gas flow rate variations reveal overshoots and undershoots of the reactor maximum temperature. © 2017 American Institute of Chemical Engineers AIChE J, 64: 468–480, 2018  相似文献   

12.
The sorption behaviours of NaOH and NaOC6H65 on quaternary ammonium resin with functional groups of ‐NMe+4CI? (hydrophilicity) and ‐NBu+4Cl? (lipophilicity) in an aqueous fixed‐bed adsorber were investigated. The types of resins and salts, salt concentration, and operating temperature were evaluated to achieve the optimum sorption conditions. The probability distribution function of the breakthrough curve was employed to describe the sorption system. The parameters of probability distribution function, sorption rate, exchange capability, height of mass‐transfer zone and degree of saturation were also obtained. The effective exchange capacities for hydrophilic resins were found to be smaller than those for lipophilic resins. The sorption capability of NaOC6H5 in the resin was larger than that of NaOH.  相似文献   

13.
Highly porous (85% void volume) polymer beads with interconnecting micro‐pores were prepared for the immobilization of Pseudomonas syringae for the degradation of phenol in a fixed‐bed column bioreactor. The internal architecture of this support material (also known as PolyHIPE Polymer) could be controlled through processing before the polymerization stage. The transient and steady state phenol utilization rates were measured as a function of substrate solution flow rate and initial substrate concentration. The spatial concentration of the bacteria on the micro‐porous support particles as well as within them was studied using scanning electron microscopy at various time intervals during the continuous operation of the bioreactor. It was found that although bacterial penetration into the porous support was present after 20 days, bacterial viability however, was compromised after 120 days as a result of the formation of a biofilm on the support particles. The steady state phenol utilization at an initial phenol concentration of 200 mg cm?3 was 100% provided that the flow rate was less than 7 cm3 min?1. Substrate inhibition at a constant flow rate of 4.5 cm3 min?1 was found to begin at 720 mg dm?3. The critical dilution rate for bacteria washout was high as a result of the highly hydrophobic nature of the support and the reduction of pore interconnect size due to bacterial growth within the pores in the vicinity of the surface of the support. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
This paper deals with the control of fixed bed bioreactors. The dynamics of these processes are described by a set of partial differential equations, which are reduced to ordinary differential equations by using a finite difference method. The task of this work is to demonstrate that a standard proportional‐integral (PI) control law, which is based on the dynamics at the bioreactor output, can be used to regulate the operation of fixed bed bioreactors (eg, fermenters, biofilters, etc). The performance of the resulting control law is illustrated by simulation results on a fixed bed anaerobic waste water treatment process. © 1999 Society of Chemical Industry  相似文献   

15.
The adsorption capacity of polyaspartamide (PAA) and multi‐wall carbon nanotubes with polyaspartamide (MWNT‐PAA) was investigated through a packed bed column with the flowing of flue gas composed of 15 % CO2, 5 % O2 and the balance N2. The adsorption performed at 25 °C, 110 kPa and inlet gas flow rate of 60 mL/min resulted in high CO2 adsorption capacity of 5.70 and 10.20 mmol‐CO2/g for PAA and MWNT‐PAA, respectively. The adsorption kinetics was very high, so 7 min were enough for the effluent gas to reach the breakthrough after saturation. The consistency of adsorbents in recurring regeneration was successful through a continuous TSA system of 10 cycle adsorption‐desorption with temperatures of 25–100 °C. The evaluation of heat through differential scanning calorimetry (DSC) resulted in exothermic adsorption with heat release of 45.14 kJ/mol and 124.38 kJ/mol for PAA and MWNT‐PAA, respectively. The heat release was found favourable to promote the desorption as the temperature could rise after adsorption. This is an advantage for energy efficiency, as it depicts the potential of energy recovery. Thus, both adsorbent PAA and MWNT‐PAA were demonstrated to be promising for CO2 adsorption capture in post‐combustion.  相似文献   

16.
BACKGROUND: This research provides new insights into the biosorption of zinc on a waste product from the orange juice industry. Optimal operating conditions maximizing percentage zinc removal were determined in batch and fixed‐bed systems. Biomass was characterized by FTIR spectroscopy and by major cation content in order to better understand the biosorpion mechanism. Zn‐loaded orange waste was proposed to be used as an alternative fuel in cement kilns. RESULTS: Sorption capacity was strongly affected by biosorbent dose and solution pH, and was not strongly sensitive to particle size under the experimental conditions studied. Equilibrium data were successfully described by a Langmuir model and sorption kinetic data were adequately modelled with the pseudo‐second‐order and Elovich rate equation. The biomass was found to possess high sorption capacity (qmax = 0.664 mmol g?1) and biosorption equilibrium was established in less than 3 h. Experimental breakthrough curves were adequately fitted to the Thomas model and the dose–response model, obtaining sorption capacities in continuous assays higher than those found in batch mode. Characterization of the biomass suggested the possible contribution of carboxyl and hydroxyl groups of biomass in Zn2+ biosorption and it also highlighted the important role of light metal ions in a possible ion‐exchange mechanism. CONCLUSIONS: Orange waste could be used as an effective and low‐cost alternative biosorbent material for zinc removal from aqueous solution. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Phenol and hexavalent chromium are considered industrial pollutants that pose severe threats to human health and the environment. The two pollutants can be found together in aquatic environments originating from mixed discharges of many industrial processes, or from a single industry discharge. The main objective of this work was to study the feasibility of using phenol as an electron donor for Cr(VI) reduction, thus achieving the simultaneous biological removal/reduction of the two pollutants in a packed‐bed reactor. RESULTS: A pilot‐scale packed‐bed reactor was used to estimate phenol removal with simultaneous Cr(VI) reduction through biological mechanisms, using a new mixed bacterial culture originated from Cr(VI)‐reducing and phenol‐degrading bacteria, operated in draw–fill mode with recirculation. Experiments were performed for feed Cr(VI) concentration of about 5.5 mg L?1, while phenol concentration ranged from 350 to 1500 mg L?1. The maximum reduction/removal rates achieved were 0.062 g Cr(VI) L?1 d?1 and 3.574 g phenol L?1 d?1, for a phenol concentration of 500 mg L?1. CONCLUSION: Phenol removal with simultaneous biological Cr(VI) reduction is feasible in a packed‐bed attached growth bioreactor. Phenol was found to inhibit Cr(VI) reduction, while phenol removal was rather unaffected by Cr(VI) concentration increase. However, the recorded removal rates of phenol and Cr(VI) were found to be much lower than those obtained from previous research, where the two pollutants were examined separately. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
Grafting active centres on a solid porous support and using alcohol molecules as a transfer agent permitted coordinated anionic ring opening polymerization of oxygenated heterocycles by a continuous process. Dehydrated porous silica or alumina have been employed as solid supports. After grafting aluminium alkoxides on these supports, ε‐caprolactone and dimethyltrimethylene carbonate have been polymerized. Conversion as well as molecular weights were dependent on the contact time of reactants within the porous phase. A model of this continuous process has been developed by a combination of a Monte Carlo simulation with a reactor model based on the contact time distribution concept. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
20.
Extraction and back‐extraction of valeric acid in a fixed bed packed with Amberlite XAD‐4 resin impregnated with tri‐n‐butyl phosphate were experimentally studied at 25 °C. The effects of the feed flow rate, acid concentration in the feed solution and extractant concentration in the impregnated resin on the breakthrough curves, were investigated. The bed saturation capacity was larger under the conditions of higher extractant concentration in the resin phase and higher acid concentration in the feed solution. A dynamic model that considers intraparticle diffusion and external liquid film diffusion as limiting steps in mass transfer rates was successfully applied. The intraparticle effective diffusivities (10?9 dm2 s?1) were from one to three orders of magnitude lower than the diffusivities in the external liquid film (10?8–10?6 dm2 s?1). A fast and complete back‐extraction of valeric acid from the saturated bed was carried out with sodium hydroxide solutions. The operational life of the impregnated resin was also studied. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号