首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shiro Saka  Yohei Isayama 《Fuel》2009,88(7):1307-1313
Production of glycerol is unavoidable in the conventional processes for biodiesel fuel (BDF) production. In this research, therefore, we investigated conversion of rapeseed oil to fatty acid methyl esters (FAME) and triacetin (TA) by processing of supercritical methyl acetate. As a result, it was discovered that the trans-esterification reaction of triglycerides with methyl acetate can proceed without catalyst under supercritical conditions, generating FAME and triacetin. In order to study the effect of the triacetin addition to FAME, its effect was investigated on various fuel characteristics. It was, consequently, discovered that there were no adverse effects on the main fuel characteristics when the molar ratio of methyl oleate to triacetin was 3:1, corresponding to the theoretically derived mole ratio from the trans-esterification reaction of rapeseed oil with methyl acetate. Moreover, the addition of triacetin to methyl oleate improved the pour point and triacetin has high oxidation stability. Therefore, by defining BDF as a mixture of methyl oleate with triacetin, we can obtain an improved yield of 105% of BDF by the supercritical methyl acetate, in excess of the yield of the conventional process.  相似文献   

2.
Conventional biodiesel production methods utilize alcohol as acyl acceptor and produces glycerol as side product. Hence, with escalating production of biodiesel throughout the world, it leads to oversupply of glycerol and subsequently causes devaluation in the market. In this study, methyl acetate was employed as acyl acceptor in non-catalytic supercritical methyl acetate (SCMA) process to produce fatty acid methyl esters (FAME) and side product of triacetin, a valuable fuel additive instead of glycerol. Consequently, the properties of biodiesel produced (FAME and triacetin) are superior compared to conventional biodiesel method (FAME only). In this research, the effects of reaction temperature, reaction time and molar ratio of methyl acetate to oil on the yield of biodiesel were investigated. Apart from that, the influence of impurities commonly found in waste oils/fats such as free fatty acids and water were studied as well and compared with methanol-based reactions of supercritical and heterogeneous catalysis. Results show that biodiesel yields in SCMA process could achieve 99 wt.% when the operating conditions were fixed at 400 °C/220 bar for reaction temperature, methyl acetate/oil molar ratio of 30:1 and 60 min of reaction time. Furthermore, SCMA did not suffer from adverse effect with the presence of impurities, proving that SCMA has a high tolerance towards contamination which is crucial to allow the utilization of inexpensive waste oils/fats as biodiesel feedstock.  相似文献   

3.
Shiro Saka  Yohei Isayama  Zul Ilham  Xin Jiayu 《Fuel》2010,89(7):1442-1446
The production of glycerol as a by-product is unavoidable in the current conventional biodiesel manufacturing processes. Since biodiesel production is expected to increase in the near future, effective utilization of glycerol will become an issue of interest. In this study, therefore, a process consisting of subcritical acetic acid treatment to convert rapeseed oil to fatty acids and triacetin followed by conversion of the obtained fatty acids to their fatty acid methyl esters in supercritical methanol treatment was investigated. The obtained results clearly revealed that this two-step reaction could proceed effectively at a high reaction rate, and that fatty acid methyl esters and triacetin could be obtained under milder reaction condition than the one-step process utilizing supercritical methyl acetate and supercritical methanol.  相似文献   

4.
周超  王凡  贺文智  李光明 《化工进展》2016,35(2):463-471
介绍了生物柴油生产过程中甘油的产生情况及均相碱催化法得到的生物柴油副产物的相关成分组成。归纳出均相碱催化法得到的生物柴油副产物甘油的精制全过程,并研究了该精制过程中副产物组分的相关变化,同时分析了精制过程中的相关影响因素(稀释剂的种类及用量、酸的种类及pH值)。提出建议:均相碱催化法制备生物柴油的伴生副产物甘油比较适合采用“预处理分离+粗甘油精制”组合工艺制备高纯度甘油,且预处理分离中常采用甲醇作稀释剂,用磷酸调节pH值比较适宜,同时应将pH值调节在2.5~4.0范围内;分离后的粗甘油经减压蒸馏、离子交换、膜分离、萃取或分子蒸馏等技术精制后,用活性炭吸附脱色,可获得高纯度甘油。  相似文献   

5.
Biodiesel fuel represents an interesting alternative as a clean and renewable substitute of fossil fuels. A typical biodiesel production process involves the use of a catalyst, which implies high energy consumptions for the separation of the catalyst and the by-products of the reaction, including those of undesirable side reactions (such as the saponification reaction). A recently proposed process involves the use of short-chain alcohols at supercritical conditions, avoiding the use of a catalyst and the occurrence of the saponification reaction. This process requires fewer pieces of equipment than the conventional one, but its high energy requirements and the need of special materials that support the reaction conditions makes the main product, biodiesel fuel, more expensive than petroleum diesel. In this work, a modification of the supercritical process for the production of biodiesel fuel is proposed. Two alternatives are proposed. The process involves the use of either reactive distillation or thermally coupled reactive distillation. Simulations have been carried out by using the Aspen One™ process simulator to demonstrate the feasibility of such alternatives to produce biodiesel with methanol at high pressure conditions. A design method for the thermally coupled system is also proposed. Both systems have been tested and the results indicate favorable energy performance when compared to the original scheme. Furthermore, the thermally coupled system shows lower energy consumptions than the reactive distillation column.  相似文献   

6.
《Fuel》2007,86(5-6):690-697
Biodiesel is a fuel generally consisting of a mixture of fatty acid methyl esters (FAMEs) which is used in alternative or in combination with petroleum diesel for its environmental benefits. Biodiesel is conveniently manufactured from vegetable oils by transesterification of triglycerides with methanol. However, the process brings about the concurrent formation of glycerol, which may become an oversupplied chemical if biodiesel production keeps growing. A novel biodiesel-like material (abbreviated as DMC-BioD) was developed by reacting soybean oil with dimethyl carbonate (DMC), which avoided the co-production of glycerol. The main difference between DMC-BioD and biodiesel produced from vegetable oil and methanol (MeOH-biodiesel) was the presence of fatty acid glycerol carbonate monoesters (FAGCs) in addition to FAMEs. In the following study, details regarding synthesis and composition of DMC-BioD are provided along with physical properties relevant for its use as a fuel. In addition, the production of potential pyrogenic contaminants was investigated by analytical pyrolysis and compared with those from MeOH-biodiesel, and the model compounds tristearin, triolein, trilinolein and oleic acid glycerol carbonate ester (OAGC). The presence of FAGCs influenced both fuel and flow properties, while the distribution of main pyrogenic compounds, including polycyclic aromatic hydrocarbons (PAHs), was little affected. Benefits and drawbacks of DMC as a candidate transmethylating reagent for producing biofuel from renewable resources and alternative co-products (glycerol carbonate and glycerol dicarbonate) are discussed.  相似文献   

7.
Biodiesel fuel has been shown as a clean energy alternative to petroleum diesel. Conventional biodiesel production involves the use of catalyst, which implies high energy consumptions for the separation of both the catalyst and the by-products of the reaction, including those of the undesirable reaction of saponification. Recently, a process involving the use of short-chain alcohols at supercritical conditions has been proposed (Saka-Dadan process); one of the main advantages of that process is that it avoids the need for a catalyst as well as the occurrence of the saponification reaction. However, although the process requires less pieces of equipment than the conventional one, its energy requirements are still high, making biodiesel fuel more expensive than petroleum diesel. This work proposes the use of reactive distillation and thermally coupled reactive distillation configurations to produce biodiesel fuel by the supercritical methanol method. First-order kinetics is used to represent the esterification reaction, obtaining high conversions in a single shell. Both of the configurations proposed reduce energy requirements when compared to the conventional (Saka-Dadan) process. Calculations were also performed to estimate CO2 emissions, thermodynamic efficiency and cost. The thermally coupled reactive distillation configuration shows to be the best alternative in terms of energy consumption, CO2 emissions and thermodynamic efficiency. Further, cost estimations also show that the use of a thermally coupled scheme considerably reduces both utilities and capital costs.  相似文献   

8.
In the last few years, the increasing production of biodiesel has led to an overproduction of glycerol, the main byproduct of this industry. This paper reports on the ketalization of glycerol in supercritical acetone to give solketal (4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane), an oxygenated compound useful as chemical and fuel additive for gasoline, diesel and biodiesel. The application of supercritical fluids (SCFs) in the chemical synthesis was explored to carry out reactions to obtain the above cyclic ketal. The experimental results reveal a drastic change in the reaction behavior when the critical condition of acetone is reached (T = 508 K). Below 508 K the reaction rate of solketal production is very low, but above this temperature a rapid increase in the reaction rate is observed. Finally, the reaction rate is stabilized at 533 K and higher temperatures due to the conversion of glycerol to acrolein and polymeric products as side reactions.  相似文献   

9.
D.L. Manuale 《Fuel》2011,90(3):1188-1196
Different feedstocks of varying acidity ranks and water contents were subjected to a series of discontinuous steps that simulated a biodiesel production process. The three steps comprised: (i) the non-catalytic transesterification with supercritical methanol at 280 °C; (ii) the distillation of the unreacted methanol, water and volatile products; and (iii) the adsorption of the impurities with adequate adsorbents. Refined soy oil, chicken oil and waste cooking oil were subjected to the same simple procedure. The process produced biodiesel complying with the water, acid, glycerides and methyl esters content specifications of the EN 14214 standard.Biodiesel production by the reaction of oils in supercritical methanol at 280 °C and methanol-to-oil molar ratios of 15 and 20 produced amounts of glycerol as small as 0.02%. This simplified the subsequent refining of the biodiesel and is considered an advantage over the classic alkali-catalyzed process (that produces 10% of glycerol by-product) because washing steps can be spared.The contents of methyl esters, water and free fatty acids showed a volcano pattern when plotted as a function of the reaction time. In the case of the free fatty acids this was attributed to the initial reaction of water and triglycerides to form acids and glycerol that increased the acidity of the product mixture. At longer reaction times these acids were likely transformed into methyl esters or were decarboxylated to hydrocarbons and CO2. Water formation was attributed to glycerol decomposition and esterification of free fatty acids.The design of a simple process for biodiesel production using a single reaction step with negligible glycerol production and an adsorption-based refining step was thus studied. A possible scheme integrating reaction, methanol recycling, biodiesel purification and heat recovery was discussed. Advantages and disadvantages of process units were analyzed on terms of operating cost and simplicity.  相似文献   

10.
In the production of biodiesel fuel from natural oils and fats via transesterification with a surplus of low molecular alcohols biodiesel and glycerol phases are obtained with alcohol residues. The utilization of the dealcoholized glycerol phase for dealcoholization of crude biodiesel phase is discussed. Theoretical relations for the calculation of the optimum conditions of this operation are derived and their validity is experimentally tested on the reaction between rapeseed oil and methanol catalyzed by KOH.  相似文献   

11.
甘油作为生物柴油的副产物,当前的产能严重过剩。甘油制氢,尤其是通过水相重整(APR)制取可以供燃料电池直接使用的高品质氢气,是提高甘油附加值、降低生物柴油成本的重要途径和手段。本文简述了当前生物柴油及其副产物甘油的生产,阐述了甘油的水相重整制氢反应,详细介绍了甘油水相重整制氢反应的热力学和动力学影响因素。分别从催化剂的贵金属活性组分、非贵金属活性组分和载体等三方面对甘油水相重整制氢反应进行了详细的综述,最后提出了双金属催化剂可能具有优异的催化甘油水相重整制氢性能。  相似文献   

12.
Commercially available partly acetylated glycerols (mono- and diacetin) are mixtures of glycerol, 1- and 2-acetylglycerol, 1,2- and 1,3-diacetylglycerol, and triacetin. Diacetin and monoacetin are by-products of the biodiesel and triacetin production using glycerol esterification with acetic acid or triglyceride interesterification with methyl acetate. Usually, primary analytical methods involve chromatography (HPLC or GC), spectroscopy (MS or NIR), and wet chemical techniques (potentiometric, iodometric titration) which are often time-consuming due to sample preparation, extended analysis time and/or complicated data analysis. Moreover, these methods require pure mono- and diacetin as standard, which are commercially unavailable.In this work, a complete 31P and 13C chemical shift data for glycerol, mono-, di- and triacetin (including isomers) allows for the identification and quantification of these components in the commercial mixtures. This experimental protocol allows for rapid analysis of mixtures that include these six components. Quantitative 31P NMR and 13C NMR results were validated to those obtained with other analytical methods, such as GC and HPLC-ELSD. 13C NMR is preferred due to allows to measure the content of triacetin, which has no free hydroxyl group, and no signal was detected by 31P NMR.  相似文献   

13.
In this paper the dehydration of bioethanol via extractive batch distillation using glycerol as entrainer is studied. Simulation and experimental tests were carried out in order to use glycerol to produce bioethanol with a composition higher than that of the azeotropic point. The results are compared to those reported using ethylene glycol and ionic liquids as entrainers for the same separation. The simulation and experimental results indicate that it is possible to produce high purity bioethanol that can be used as a fuel oxygenate. Among the entrainers used in the experimental tests, the glycerol presented the best performance in terms of the purity in the distillate. Also, it is important to highlight that glycerol has a lower cost in comparison to ethylene glycol and ionic liquids and that is considered a by-product in the biodiesel production.  相似文献   

14.
New biodiesel production processes comprising one‐step and two‐step supercritical dimethyl carbonate methods have been pioneered. The use of dimethyl carbonate allows the reaction conditions to be mild and thus avoid unwanted deterioration of substrates during reaction. In this process, without any catalyst applied, supercritical dimethyl carbonate converts triglycerides (rapeseed oil) into fatty acid methyl esters (FAME) along with glycerol carbonate as a value‐added by‐product, instead of glycerol. Free fatty acids could be also converted into FAME so that the total yield of biodiesel for both methods resulted in over 96 wt%. In addition, the produced FAME satisfy the fuel requirements for the international standards of biodiesel specification.  相似文献   

15.
World energy crisis has become the foremost crucial topic in this new era. Unstable price of petroleum fuel in the world market and recent environmental concerns on gas emission during combustion have led to intensive search for alternative energy sources that are not only renewable but sustainable. Without doubt, one of the most important evolutions in the renewable energy sector is the development of biodiesel. Currently commercial biodiesel production is using methanol (non-renewable) as the main reactant to produce biodiesel due to its wide availability and low cost. However, biodiesel produced using methanol are not completely renewable as methanol can only be derived from petroleum fuel. Unfortunately, not much attention has been given on this issue. On the other hand, ethanol may emerge as a good solution to this problem as ethanol can be derived from renewable sources through fermentation process. The only constraint on the use of ethanol is its slow reaction rate in transesterification reaction and therefore resulted to energy inefficient biodiesel production process. Such limitations worsen if solid acid catalyst is used in the reaction. Thus, the aim of this present work is to introduce a simple mixed methanol-ethanol method to overcome these limitations and to produce biodiesel in a greener and sustainable manner. The effect of methanol to ethanol to oil molar ratio, reaction temperature, catalyst loading and reaction time towards biodiesel yield are discussed in detail. From this study, it was found that an optimum biodiesel yield of 81.4% can be attained at a relatively short reaction time of 1 h.  相似文献   

16.
《Fuel Processing Technology》2005,86(10):1097-1107
Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. It consists of the monoalkyl esters formed by a catalyzed reaction of the triglycerides in the oil or fat with a simple monohydric alcohol. The reaction conditions generally involve a trade-off between reaction time and temperature as reaction completeness is the most critical fuel quality parameter. Much of the process complexity originates from contaminants in the feedstock, such as water and free fatty acids, or impurities in the final product, such as methanol, free glycerol, and soap. Processes have been developed to produce biodiesel from high free fatty acid feedstocks, such as recycled restaurant grease, animal fats, and soapstock.  相似文献   

17.
Saturated MAG (SMG) are known to be present in FAME intended to be used as biodiesel. These SMG can strongly affect the properties of biofuels such as the cloud point (CP), and they have been implicated in engine failure due to filter plugging. It is shown here that lipase G from Penicillium camemberti can be efficiently used for the transesterification of SMG to fatty acid methyl ester and glycerol even in the presence of the bulk biodiesel. Thus, in samples of commercial biodiesel to which glycerol monostearate (GMS) and glycerol monopalmitate (GMP) had been added, their levels were enzymatically reduced from 2% (w/v) to 0.22% (w/v) for GMP and 0.14% (w/v) for GMS as confirmed by GC‐MS analysis. Practical applications: SMG present in biodiesel can have a pronounced negative effect on the CP, and/or filterability and in‐field performance of the fuel. The lipase‐catalyzed transesterification shown in this paper enables a significant reduction in the amount of SMG, leading to superior biodiesel quality.  相似文献   

18.
Biodiesel has provided an eco-friendly solution to fuel crisis, as it is renewable, biodegradable and a non-toxic fuel that can be easily produced through enzymatic transesterification of vegetable oils and animal fats. Enzymatic production of biodiesel has many advantages over the conventional methods as high yields can be obtained at low reaction temperatures with easy recovery of glycerol. Microbial lipases are powerful biocatalysts for industrial applications including biodiesel production at lower costs due to its potential in hydrolyzing waste industrial materials. Among them, lipases from yeasts, Candida antarctica, Candida rugosa, Cryptococcus sp., Trichosporon asahii and Yarrowia lipolytica are known to catalyze such reactions. Moreover, stepwise addition of methanol in a three step, two step and single step reactions have been developed using yeast lipases to minimize the inhibitory effects of methanol. The latest trend in biodiesel production is the use of whole-cell as biocatalysts, since the process requires no downstream processing of the enzyme. Synthesis of value added products from the byproduct glycerol further reduces the production cost of biodiesel. This review aims at compiling the information on various yeast lipase catalyzed transesterification reactions for greener production of biodiesel.  相似文献   

19.
乙酸甲酯体系酶催化法生产生物柴油的后处理精制工艺   总被引:1,自引:0,他引:1  
乙酸甲酯代替甲醇作为酯交换的酰基受体,可避免甲醇和甘油对酶催化剂的损害. 本工作根据乙酸甲酯体系制备生物柴油的特点,提出了相应的生物柴油后处理精制工艺,并根据实验研究给出了可行的操作工艺参数及物料衡算,所得成品精生物柴油符合DINE 51606质量标准. 应用化工模拟软件Pro/II模拟计算了粗生物柴油精馏的影响因素. 结果表明,精馏塔理论板数7~11块、塔顶绝对压力133~1333 Pa、回流比1.5~3.0是较优的减压精馏操作范围.  相似文献   

20.
Detailed analysis is described of the samples taken after suitable reaction times from the actual reaction mixture during the production of biodiesel fuel using methanolysis of rapeseed oil catalyzed by KOH. Three methods for stoppage of reaction (neutralisation of catalyst, dilution by two suitable solvents) in the sample are used. The contents of mono‐, di‐ and triacylglycerols, methylesters of fatty acids (biodiesel) and potassium salts of fatty acids of rapeseed oil, glycerol (by HPLC method), basicity (by potentiometric titration) and water (by GC and Karl‐Fischer method) in the samples are determined. An example of these determinations is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号