首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为生产清洁汽油,某炼化公司1.5 Mt/a 重油催化裂化装置先后进行了催化裂化汽油辅助提升管(ARFCC)和MIP-CGP工艺技术改造。本文主要介绍ARFCC和MIP-CGP两种不同型式的催化裂化汽油降烯烃工艺的运行情况与技术指标。结果表明:与FCC工艺相比,ARFCC工艺和MIP-CGP工艺均达到了生产清洁汽油的基本要求,但MIP-CGP工艺比ARFCC工艺具有更大的技术优势。采用MIP-CGP工艺改造后装置扩能至1.7 Mt/a,掺渣率为15%~53%,汽油品质得到显著提升,掺渣率在35% 以下时,汽油烯烃体积分数保持在32%以下,RON在 90以上,汽油诱导期大幅度提高,装置能耗也有所下降。  相似文献   

2.
介绍中国石化北京燕山分公司已实现工业化的催化裂化汽油加氢精制和吸附脱硫工艺的技术特点和工业应用情况,以及北京地方标准汽油的生产现状和满足国V汽车排放标准汽油的生产技术路线,并提出炼油系统下一步扩能改造的建议。总的来看,该公司汽油生产装置结构合理,超低硫汽油组分资源充足,采用的S Zorb工艺与传统的汽油加氢脱硫工艺相比,在达到相同的汽油脱硫率时汽油辛烷值损失小,氢耗和能耗低,可满足国V汽车排放标准汽油的生产要求。  相似文献   

3.
灵活双效催化裂化(FDFCC)工艺的工程设计及工业应用   总被引:13,自引:1,他引:12  
介绍了灵活双效催化裂化 (FDFCC)工艺的特点。通过对FDFCC工艺操作形式选择的分析及热平衡计算 ,FDFCC工艺存在着汽油反应部分与重油反应部分处理量匹配的问题。通过对汽油提升管内催化剂流动形式的分析 ,提升管内气固接触形式为密相气力输送。该工艺对汽油改质和降低汽油中的烯烃含量有积极的意义  相似文献   

4.
为生产超低硫清洁汽油,对比分析了CDHDS及Prime-G+这2种典型催化裂化汽油选择性加氢脱硫工艺的流程选择、催化剂选用、主要操作参数、产品质量和主要公用工程消耗情况。结果表明,在工艺流程方面,2种工艺在轻汽油处理单元均采用全馏分汽油加氢技术,CDHDS工艺在重汽油加氢脱硫单元采用的是催化蒸馏加氢脱硫技术,略优于Prime-G+工艺采用的固定床加氢脱硫技术;2种工艺使用的催化剂略有不同;在工业设计方面,采用这2种工艺虽然均可生产出超低硫清洁汽油,但与 Prime-G+工艺相比,CDHDS工艺的主要操作参数略优,公用工程消耗较低。  相似文献   

5.
降低FCC汽油硫含量是降低车用成品汽油硫含量、减少汽车尾气污染的关键。FDFCC工艺采用双提升管反应器并采用和分别适宜于重油裂化和汽油改质的工艺条件 ,可使FCC汽油硫含量下降 2 0 %~4 0 % ,烯烃含量降低 2 0 %~ 30 % ,汽油诱导期和辛烷值增加 ,苯含量基本维持不变 ,是降低FCC汽油硫含量的有效措施。  相似文献   

6.
通过剖析不同的催化裂化汽油后处理工艺在处理高烯烃、高硫含量汽油时的工业装置运转数据,发现汽油烯烃和硫含量降低会造成辛烷值损失较大,生产成本急剧上升,原因在于汽油脱硫率超过97%时,烯烃饱和率急剧增加,由此带来氢耗上升,生产成本上升。为此,创建催化裂化汽油降烯烃与脱硫分步集成工艺,汽油烯烃含量降低由定向调控汽油组成的催化裂化工艺来实现,通过强化异构化和选择性氢转移反应,使汽油烯烃体积分数降低到不超过20%、硫质量分数不超过300μg/g,为后续汽油脱硫单元提供适宜的汽油原料。汽油脱硫后处理工艺控制汽油脱硫率不超过97%、烯烃饱和率不超过20%,最终辛烷值损失大幅降低,巧妙化解脱硫-烯烃饱和-辛烷值损失-低成本生产的矛盾链。工业应用结果表明,在相同的汽油脱硫率下,该工艺路线的烯烃饱和率和辛烷值损失大幅降低,实现了低成本地生产国Ⅴ和国Ⅵ车用汽油,得到大面积的应用,为汽油质量持续升级提供了强有力的支撑。  相似文献   

7.
基于脱硫工艺原理,分析了催化汽油M-DSO(芳构化-选择性加氢脱硫)与溶剂抽提脱硫联合工艺的实际应用情况,并提出了联合工艺优化方案。结果表明:M-DSO单元加氢改质重汽油经加氢脱硫(HDS)后,脱硫率达97.7%,研究法辛烷值(RON)损失2.3个单位;溶剂抽提脱硫单元抽余油含硫量为4.5μg/g,脱硫率达91.9%;联合工艺优化方案即将催化汽油切割成轻、中、重汽油馏分,轻汽油直接作为汽油调和组分;中汽油先经溶剂抽提脱硫再经加氢改质处理,在脱硫、降烯烃的同时尽量保留辛烷值;少量重汽油直接进行HDS处理,避免了因部分含硫有机化合物加氢改质后导致HDS难度的增加。  相似文献   

8.
轻汽油醚化技术在国内的应用前景分析   总被引:1,自引:0,他引:1  
国Ⅳ汽油标准将于2014年开始施行,新标准对硫含量和烯烃含量提出了更严格的限制。降低催化汽油中硫含量的有效途径是采用加氢工艺,但是,加氢工艺通常都会带来辛烷值的损失,给高标号汽油的生产带来压力。催化裂化轻汽油醚化技术是有效提高汽油质量的技术之一,但是,受乙醇汽油推广的限制,醚化装置的建设在业内存在一定的争论。论述了轻汽油醚化技术的工艺,分析了其优点和经济性。针对目前争论较大的轻汽油醚化技术及其制约因素进行分析,研究结果认为,轻汽油醚化技术是我国当前汽油质量升级比较适合的技术,在国内具有一定的应用空间。  相似文献   

9.
分析对比了MIP-CGP工艺与辅助提升管工艺对汽油的改质效果。结果表明,辅助提升管控制汽油烯烃含量较为灵活,且降烯烃效果显著;MIP-CGP工艺有利于提高汽油的辛烷值;采用MIP-CGP工艺液化石油气(LPG)及丙烯收率均较高,改质后,LPG中的丙烯质量分数可增加5.21个百分点,丙烯收率达到7.058%。  相似文献   

10.
脱除催化裂化轻汽油中含氮化合物的方法   总被引:1,自引:0,他引:1  
催化裂化轻汽油醚化工艺是降低汽油烯烃而基本不损失汽油辛烷值的理想工艺,但是轻汽油中的微量含氮化合物会导致醚化工艺的催化剂中毒,必须将其脱除.本文对脱除催化裂化轻汽油中氮化物的主要方法,包括萃取法、吸附法、预加氢和其它方法进行综述,总结各种方法的优缺点,阐述氮化物脱除技术的新进展,并对未来催化裂化轻汽油脱氮的发展方向做出...  相似文献   

11.
克拉玛依石化公司汽油池中催化重整汽油和催化加氢汽油占比相近,且高辛烷值、低芳烃、低烯烃汽油调合组分比例较低,导致芳烃和烯烃含量无法满足国VI汽油质量标准要求。鉴于上述瓶颈,制定汽油质量升级和成品油结构优化方案,2018年大修期间对催化裂化、催化裂化汽油加氢脱硫、柴油加氢改质和连续重整装置进行改扩建,新建轻汽油异构化和醚化装置。方案实施后,汽油池中芳烃体积分数下降5.0百分点,烯烃体积分数下降2.2百分点,调合汽油产品符合满足国VI质量标准,柴汽比灵活可控,预计2019年柴汽比为 1.25,企业年度经济效益增加2.6538亿元。  相似文献   

12.
醚化汽油调和国Ⅳ 车用汽油配方研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在降低锰剂加入量的情况下,利用正交试验优选出引入醚化汽油组分调和93#,97#车用汽油 的配方。结果表明,调和93#汽油最佳配方的组分为醚化汽油、加氢汽油、催化汽油、甲基叔丁基醚(MT BE)、生成油,其质量分数依次为10%,60%,6%,5%,7%;调和97#汽油最佳配方的组分为醚化汽油、加氢汽油、催化汽油、MTBE、生成油、重芳烃汽油、甲苯,其质量分数依次为8%,50%,12%,9%,7%,4%,7%。按优化配方调和出符合国Ⅳ 标准的车用汽油,达到了降低汽油烯烃、芳烃含量,降低蒸汽压及提高辛烷值的目的。  相似文献   

13.
中国石油玉门油田分公司炼油化工总厂紧盯市场需求,通过优化装置操作、提高直馏汽油和催化裂化汽油干点、提高催化裂化和焦化装置的汽油收率、拓宽催化汽油加氢装置原料、降低MTBE硫含量、控制汽油加氢装置汽油加氢深度、提高重整汽油辛烷值、将拔头油进汽油加氢装置回炼、将苯分离切割后的C5组分调入汽油池、选用非金属汽油抗爆剂等措施,使全厂柴汽比降低0.16,汽油收率提高1.27百分点。这相当于增产汽油25.4 kt/a,全年增效1 143万元,在满足市场需要的同时,取得了良好的经济效益。  相似文献   

14.
针对中国石化济南分公司催化裂化精制汽油铜片腐蚀经常不合格,并导致成品调合罐样品常常出现铜片腐蚀不合格的情况,对原因进行分析并提出应对措施。结果表明,成品汽油铜片腐蚀不合格的原因是第一套催化裂化装置(简称一催化)的精制汽油中含有多硫化物等活性硫化物,单质硫和多硫化物经过氢氧化钠乙醇溶液洗涤后可以被除去,使汽油铜片腐蚀情况改善。一催化精制汽油中的活性硫化物可能来自直馏汽油中的单质硫。通过更改工艺,将含有单质硫的一催化稳定汽油全部改进S Zorb装置,剩余的二催化稳定汽油进入脱硫脱臭单元,彻底解决了成品汽油铜片腐蚀不合格的问题  相似文献   

15.
汽油及汽油清净剂对汽油直喷发动机沉积物的影响   总被引:1,自引:0,他引:1  
通过典型工况条件下不同组分汽油的对比试验,考察了汽油和汽油清净剂对汽油直接喷射发动机喷嘴沉积物的影响,结果表明汽油中的芳烃组分对汽油直接喷射发动机喷嘴沉积物的影响最大。  相似文献   

16.
考察了汽油清净剂对储备汽油清净性的影响及其作用机理。研究结果表明,储备汽油清净性能差,生成大量的沉积物,需要加入清净剂。储备汽油沉积物形貌和元素组成与新鲜汽油沉积物不同,前者呈颗粒状,氢碳原子比小。清净剂加入储备汽油中,能有效降低沉积物的量,改善汽油清净性,其作用机理与新鲜汽油基本一致,因此对于储备汽油而言,无需开发新类型清净剂,只需选用清净分散能力强的清净剂。  相似文献   

17.
中国石油天然气股份有限公司自主研发的催化裂化(FCC)汽油催化精馏硫转移-加氢脱硫工艺技术在中国石油乌鲁木齐石化公司进行了工业试验,完成两种原料工况下的工业试验标定。标定结果表明:在FCC全馏分汽油为原料的工况下,硫转移后轻汽油硫质量分数为10.1 μg/g,脱硫重汽油硫质量分数为9.0 μg/g,调合全馏分汽油硫质量分数为9.5 μg/g,RON为88.7;在醚化重汽油为原料的工况下,醚化轻汽油硫质量分数为11.1 μg/g,硫转移中汽油硫质量分数为12.9 μg/g,脱硫重汽油硫质量分数为11.4 μg/g,调合全馏分汽油硫质量分数为11.7 μg/g,RON为90.2。采用FCC汽油催化精馏硫转移技术,轻、重汽油的切割点可以提高到100~120 ℃,硫转移后轻质汽油的硫含量符合对国Ⅴ、国Ⅵ标准清洁汽油调合组分的要求。  相似文献   

18.
催化裂化汽油组成对其储存安定性的影响   总被引:3,自引:0,他引:3  
 通过对催化裂化(FCC)汽油组成、诱导期、吸光度等性质指标的跟踪测试,考察了影响FCC汽油安定性的主要因素。结果表明,FCC汽油中除按产品质量要求严格控制含量的烯烃、总硫及硫醇是影响FCC汽油不安定的主要因素外,共轭二烯烃的存在严重影响FCC汽油的储存安定性,含氮化合物是油品变色的关键物质,而大部分酚类化合物具有抗氧化性,它们的存在有利于延长氧化变质诱导期,但对FCC汽油生胶、变色具有酸性催化剂作用。酚含量越多的FCC汽油,其诱导期越长,但油品变色也越快。FCC汽油的酚含量较高(>200μg/g)时,其诱导期随着二烯值的增大而缩短,储存吸光度随着二烯值、碱性氮含量的增大而增加;酚含量较低(<120μg/g=时,汽油颜色稳定,二烯值、碱性氮含量的变化对储存吸光度影响不大,二烯值小至0.7μg/g也可导致诱导期缩短。通过优化催化原料和操作条件、优化调合和添加抗氧防胶剂等措施,可有效地提高FCC汽油的储存安定性。  相似文献   

19.
The effect of blending MTBE in the gasoline was evaluated. MTBE effectively boost the octane numbers of gasoline without adversely effecting its other properties. However, MTBE is not as efficient as leadalkyl compounds as far as the specific octane number improvements are concerned. The addition of 5 to 30 volume percent MTBE increases 1.9 to 11.8 RON of a typical gasoline. MTBE addition also extends the volume of gasoline produces for a given crude by adding volume to the gasoline pool. MTBE provides much higher FEON to the gasoline in comparison with other gasoline components. A higher FEON increases the efficiency of the engine. MTBE is not affected by the lead level of the gasoline. For this reason, lost octane in future lead reductions of the gasoline in Saudi Arabia can be made up with MTBE. MTBE addition to the Saudi gasoline increases the RVP but within the specification of the gasoline. MTBE has favorable effect on the distillation characteristics of the gasoline. MTBE addition lowers the distillation temperature which improves driveability and cold engine operation. MTBEgasoline blends were found free of gums and peroxides after long term storage and pose no phase separation problems in the presence of water. MTBE is miscible in gasoline in all proportions and its solubility in water is low.  相似文献   

20.
汽油润滑性研究I.对欧洲汽油润滑性的初步考察   总被引:9,自引:7,他引:2  
采用已建立的汽油磨损测试法对欧洲汽油的润滑性进行了初步考察,其目的是得到一些基本数据供进一步研究用。为了考察汽油润滑性问题内在的化学因素,对基础油、汽油组分、掺和剂、添加剂以及商品汽油进行了以下试验:(1)考察5种已知无铅基础汽油的磨损,并与瑞典环保柴油对比;(2)考察汽油各组分油的本体组成对汽油润滑性的影响;(3)对掺和剂MTBE加入汽油,考察其对润滑性的影响;)4)将清净剂加入汽油,考察其对润  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号