首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CCAAT box is one of the conserved motifs found in globin promoters. It binds the CP1 protein. We noticed that the CCAAT-box region of embryonic/fetal, but not adult, globin promoters also contains one or two direct repeats of a short motif analogous to DR-1 binding sites for non-steroid nuclear hormone receptors. We show that a complex previously named NF-E3 binds to these repeats. In transgenic mice, destruction of the CCAAT motif within the human epsilon-globin promoter leads to substantial reduction in epsilon expression in embryonic erythroid cells, indicating that CP1 activates epsilon expression; in contrast, destruction of the DR-1 elements yields striking epsilon expression in definitive erythropoiesis, indicating that the NF-E3 complex acts as a developmental repressor of the epsilon gene. We also show that NF-E3 is immunologically related to COUP-TF orphan nuclear receptors. One of these, COUP-TF II, is expressed in embryonic/fetal erythroid cell lines, murine yolk sac, intra-embryonic splanchnopleura and fetal liver. In addition, the structure and abundance of NF-E3/COUP-TF complexes vary during fetal liver development. These results elucidate the structure as well as the role of NF-E3 in globin gene expression and provide evidence that nuclear hormone receptors are involved in the control of globin gene switching.  相似文献   

2.
Vitamin A and other fat-soluble hormones and vitamins have important roles as modulators of essential biological processes such as homeostasis, development, differentiation, and oncogenesis and also as regulators of the immune system. The active form of vitamin A, retinoic acid, as well as vitamin D3 and thyroid hormones exert their actions by binding to specific nuclear receptors that represent one subfamily of the steroid/thyroid hormone receptor superfamily. To identify new members of the retinoid/thyroid hormone receptor subfamily that could play a role in the immune system, a screening of a T cell cDNA library was performed using a retinoid X receptor probe. A clone was isolated encoding a novel nuclear receptor expressed mainly in the thymus and T cell lines. This new receptor, TOR (thymus orphan receptor), is most closely related in both its DNA-binding domain and ligand-binding domain, 90% and 53%, respectively, to ROR alpha/RZR alpha and clusters with these two receptors and RZR beta in a phylogenetic tree, when both the DNA-binding domain and the ligand-binding domain sequences of nuclear receptors are compared. Thus, TOR is part of a subgroup of receptors, one of which has recently been reported to be activated by melatonin. TOR binds specifically to a direct repeat of the half-site sequence 5'-AGGTCA-3' with a four- or five-nucleotide spacer, DNA sequences that also serve as binding sites for thyroid hormone (TR), and retinoic acid receptors (RAR). In transient transfection experiments TOR does not activate a reporter gene carrying these sequences in the absence or the presence of any known nuclear receptor ligands. TOR, however, is able to repress TR and RAR activity on DR-4-TREs or DR-5-RAREs, respectively. Therefore, our data suggest that TOR, similar to COUP-TF, can negatively regulate retinoic acid and thyroid hormone signals. However, the response elements recognized by TOR and COUP-TF differ as do the expression patterns of these receptors. Thus, one important role of TOR could be to modulate retinoid and thyroid hormone signals in the thymus.  相似文献   

3.
4.
5.
6.
An initial crucial step in estrogen activation of gene expression is the interaction of the estrogen receptor with a specific nucleotide sequence [estrogen responsive element (ERE)]. Previously, we found that the estrogen receptor binds preferentially and with high affinity to the lower strand of the rat prolactin imperfect ERE which contains tertiary structure (Lannigan DA and Notides AC, Proc Natl Acad Sci USA 86: 863-867, 1989). Using perfect and imperfect EREs from the upstream region of the chicken vitellogenin II gene, we have now extended our findings and have determined that the estrogen receptor preferentially interacts with either perfect or imperfect EREs which contain tertiary structure. A similar structure is present in a synthetic 42 bp oligonucleotide corresponding to the lower strand of a perfect ERE with flanking sequences from the rat prolactin ERE. Moreover, deviations from the ERE consensus sequence decrease the binding of the estrogen receptor to the tertiary-structured ERE. We also have determined that ERE flanking sequences contribute to the affinity of the receptor for the tertiary-structured ERE. Furthermore, ERE flanking sequences can influence the types of interactions that the estrogen receptor makes with the tertiary-structured ERE.  相似文献   

7.
Preproenkephalin (PPE) gene expression is specifically induced by estrogen in hypothalamus of ovariectomized (OVX) females, better than in male rats. To study estrogen actions on gene regulation, we have presently characterized protein-DNA interactions by use of a consensus estrogen response element (ERE) and a putative ERE from PPE gene, with nuclear extracts from hypothalamus. By use of the electrophoretic mobility shift assay (EMSA), ERE binding activity was detected in nuclear extracts from neuronal tissues including hypothalamus, hippocampus, striatum, cerebellum and frontal cortex, and non-neuronal tissues such as pituitary and uterus, but not lung of OVX female rats with a consensus ERE, as well as a 129-bp PCR fragment from PPE promoter and a hairpin oligonucleotide that contains a putative ERE of the rat PPE gene. The ERE binding was eliminated by the addition of specific ERE-containing oligonucleotide, but not control oligonucleotides. Protein and DNA associated and dissociated very rapidly. By use of supershift assay, interactions of estrogen receptor with ERE were demonstrated in hypothalamic nuclear extracts. The initial levels of specific ERE binding in the hypothalamic nuclear extracts were comparable between castrated male and OVX female rats. However, estrogen treatment, either estradiol or estradiol benzoate, produced a rapid and tissue-specific induction of a slow mobility complex of ERE binding in hypothalamic nuclear extracts from females, better than in male rats, presumably from other associated factors, or a conformational change or other posttranslational modifications. This estrogen-induced slow mobility complex of ERE binding in hypothalamus was not observed after treatment with progesterone or tamoxifen. These results suggest that specific ERE binding is present in rat hypothalamic nuclear proteins, which may contribute to the upregulation of PPE gene expression by estrogen, and that the sexually differentiated action of estrogen may be related to an estrogen-induced conformational change, but not to the initial level of ERE-binding activity.  相似文献   

8.
9.
10.
11.
12.
13.
We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.  相似文献   

14.
15.
16.
We have investigated the hormone- and DNA-binding mechanisms of the wild-type human estrogen receptor (hER) overproduced in insect cells using a baculovirus expression system. The recombinant hER was indistinguishable in size (67 kDa) and immunogenically from the native human estrogen receptor in MCF-7 breast carcinoma cells. The recombinant hER was purified to 70-80% homogeneity with a two-step procedure that included ammonium sulfate precipitation and oligonucleotide affinity chromatography using a unique Teflon affinity matrix. The recombinant hER bound estradiol with a positively cooperative mechanism. At hER concentrations in excess of 13 nM the Hill coefficient reached a maximal value of 1.6, whereas, at lower hER concentrations, the Hill coefficient approached 1.0, suggesting that the hER was dissociated to the monomeric species and site-site interactions were diminished. The hER specifically bound an estrogen responsive element (ERE) from chicken vitellogenin II gene as measured by the gel mobility assay, ethylation, and thymine interference footprinting. Specific interference patterns suggest a two-fold symmetry of the hER binding to the ERE with each monomer of the hER bound in the major groove of the DNA. These data indicate that the recombinant hER is valuable to define the biochemical and structural properties of the native estrogen receptor.  相似文献   

17.
BACKGROUND: The receptor (ER) for estrogen (E2) is routinely assayed as a marker to determine the feasibility of anti-hormone therapy against breast cancer because ER-positive (ER+) tumors are much more likely to respond to anti-hormone therapy than are ER-negative (ER-). However 40% of ER+ breast cancer patients do not respond to anti-hormone therapy. We suggest that this unpredictability of therapeutic responses lies in the current ER assays, which measure only an initial component of the E2-responsive pathway, and that the difference depends upon altered downstream processes. We propose a functional criterion that subclassifies breast cancers on the basis of specific binding of ER to its cognate DNA sequence, the estrogen response element (ERE). MATERIALS AND METHODS: ER was identified in breast cancer cell lines by immunofluorescence assay, Western blot analysis, identification of ER-specific mRNA, and by interaction of the ER-ERE complex with three different ER-specific antibodies. ER-ERE complex formation was measured by electrophoretic mobility shift assay (EMSA). Transactivation of the E2-responsive gene was studied by transfection of cells with fusion gene construct with the promoter-containing ERE sequence and assay of reporter gene activity in the cell extracts. RESULTS: The growth of ER+ T47D cells was sensitive to tamoxifen, ICI-182,780, and ethynyl estradiol (EE2), whereas another ER+ breast cancer cell line, 21 PT, was resistant to these compounds. The estrogen receptor (ER) in the nuclear extracts of MCF-7 and T47D demonstrated hormone-dependent interaction with the response element (ERE) and also downstream transactivation of the E2-responsive PS2 promoter. But in the 21 PT cell line that was designated as ER- on the basis of ligand-binding assay and was found to be ER+ by all the other ER assays, ER-ERE interaction and PS2 promoter transactivation were independent of hormone. CONCLUSIONS: On the basis of the downstream functional assay of ER interaction with ERE, ER+ breast tumor cells can be subclassified into two categories. The first is E2-dependent (ERd+) and these cells should respond to anti-hormone therapy. The second type of ER interacts with ERE independent of E2 (ERi+) and constitutively transactivates responsive genes. It is predicted that the latter type of breast cancers will not respond to antihormone therapy.  相似文献   

18.
The steroid hormone 20-hydroxyecdysone is a key regulatory factor, controlling blood-meal triggered egg maturation in mosquitoes. To elucidate the ecdysone hierarchy governing this event, we cloned and characterized the ecdysone receptor (AaEcR) and the nuclear receptor Ultraspiracle (AaUSP), a retinoid X receptor homologue, from the mosquito, Aedes aegypti, which form a functional complex capable of ligand and DNA binding. Here we analyzed the DNA-binding properties of the AaEcR.AaUSP heterodimer with respect to the effects of nucleotide sequence, orientation, and spacing between half-sites in natural Drosophila and synthetic ecdysone response element (EcREs). By using an electrophoretic gel mobility shift assay, we showed that AaEcR.AaUSP exhibits a broad binding specificity, forming complexes with inverted (IR) and direct (DR) repeats of the nuclear receptor response element half-site consensus sequence AGGTCA separated by spacers of variable length. A single nucleotide spacer was optimal for both imperfect (IRhsp-1) and perfect (IRper-1) inverted repeats; adding or removing 1 base pair in an IRhsp-1 spacer practically abolished binding. However, changing the half-site to the consensus sequence AGGTCA (IRper-1) increased binding of AaEcR.AaUSP 10-fold over IRhsp-1 and, at the same time, reduced the stringency of the spacer length requirement, with IRper-0 to IRper-5 showing detectable binding. Spacer length was less important in DRs of AGGTCA (DR-0 to DR-5); although 4 bp was optimal, DR-3 and DR-5 bound AaEcR.AaUSP almost as efficiently as DR-4. Furthermore, AaEcR. AaUSP also bound DRs separated by 11-13 nucleotide spacers. Competition experiments and direct estimation of binding affinity (Kd) indicated that, given identical consensus half-sites and an optimal spacer, the AaEcR.AaUSP heterodimer bound an IR with higher affinity than a DR. Co-transfection assays utilizing CV-1 cells demonstrated that the mosquito EcR.USP heterodimer is capable of transactivating reporter constructs containing either IR-1 or DR-4. The levels of transactivation are correlated with the respective binding affinities of the response elements (IRper-1 > DR-4 > IRhsp-1). Taken together, these analyses predict broad variability in the EcREs of mosquito ecdysone-responsive genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号