首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid hormone action is mediated through its nuclear receptor (thyroid hormone receptor; TR). A mutation in the TR causes resistance to thyroid hormone (RTH) with autosomal dominant inheritance. Using T3 binding assay, gel shift assay and transfection study, the pathogenesis of this disorder was elucidated at a molecular level. Mutant TRs lose their T3 binding activity, and inhibit wild type TR action in a dominant negative manner. For this dominant negative inhibition, the preservation of DNA binding and dimerization activities are required. It is indicated that the mutant TR complex competes with wild type TR complex for the DNA binding site to exert dominant negative inhibition. Thus, the functional analyses of mutant TRs are useful to elucidate the molecular basis of this disorder.  相似文献   

2.
BACKGROUND: Mutations in the ligand-binding domain of the thyroid hormone receptor beta (TR beta) gene cause the syndrome of resistance to thyroid hormone (RTH). The clinical phenotype results from the antagonism of the normal TR alpha and the non-mutated TR beta alleles by the TR beta 1 mutants, via a dominant negative effect. There is, however, marked heterogeneity of organ resistance within and among kindreds with RTH. This study examines the potential role of cell type in modulating the dominant negative potency of human TR beta 1 (h-TR beta 1) mutants. MATERIALS AND METHODS: Transient transfections were performed in HeLa and NIH3T3 cells, using a wild type (WT) and three naturally occurring mutant h-TR beta 1 constructs, and three natural thyroid hormone response elements (TREs). Immunocytochemistry was performed to detect levels of TR beta 1 expression in these two cell types. In order to determine how TR beta 1 interacts with other cellular partners, gel-shift analyses using HeLa and NIH3T3 nuclear extracts were performed. RESULTS: Transfection studies using WT h-TR beta 1 in HeLa and NIH3T3 cells, showed that the 3,3',5-triiodothyronine (T3)-induced transactivation of the different TREs varied between cell types. Unlike the non-T3-binding h-TR beta 1 mutant, PV, mutants ED and OK displayed the expected T3-induced dose responsiveness in these two cell types. For each TRE examined, the magnitude of the dominant negative effect varied between the cell types. The levels of receptor expression in HeLa and NIH3T3 cells were identical, as determined by immunocytochemistry. Gel-shift analyses showed differences in the formation of hetero- and homodimers depending on both the cell type and TRE motif. CONCLUSIONS: The cell type in which a mutant receptor operates affects the relative amounts of hetero- and homodimers. Together with the nature of the mutation and the TRE-motif, this could modulate the dominant negative action of mutant receptors in different tissues, which, in turn, could contribute to the variable phenotypic characteristics of RTH.  相似文献   

3.
The chicken lysozyme silencer F2 (F2) thyroid hormone response element (TRE) contains an unusual everted palindromic arrangement, has a high affinity for thyroid hormone receptor (TR) homodimers, and is especially sensitive to dominant negative inhibition by, the T3 resistance (RTH) mutant TR beta P453H. We used various TREs and TR mutations to determine the mechanisms for this sensitivity. Changing the F2 orientation from an everted palindrome to a direct repeat with a 4-bp gap (DR+4) (F2-DR) decreased the sensitivity to inhibition at high T3 concentrations, while a loss of this sensitivity occurred with a palindromic arrangement of these same half-sites. F2 contains the dinucleotide TG 5' to each consensus half-site conforming to the optimal TR-binding octamer, YRRGGTCA. A T to A change in position 1 of both F2 half-sites markedly reduced T3-induction, yet only slightly reduced TR homodimer or TR-retinoid X receptor (RXR) heterodimer binding. The TR beta ninth heptad mutation, L428R, prevents TR heterodimerization with RXR and eliminates the inhibitory effect of the P453H mutant TR on the F2-DR, but not the F2 element. Structural features of a TRE that favor strong TR binding of both TR homodimers and TR-RXR heterodimers containing the mutant TR, such as the everted palindromic conformation or the optimal TR-binding consensus octamer, enhance the sensitivity of a TRE to inhibition by the mutant TR. Thus, both half-site orientation and sequence contribute to the sensitivity of a given TRE to dominant negative inhibition by a mutant TR.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Retinoid X receptors (RXRs) form heterodimers with thyroid hormone receptors (TRs). RXRs increase DNA binding affinity of TRs and T3-mediated transactivation on positive T3 response elements (TREs). However, the role of RXRs on negative TREs, and the relation of RXRs to the dominant negative effect of mutant TRs, are not defined. To clarify the function of RXRs on negative TREs, we performed transient cotransfection studies using the rat glycoprotein hormone alpha promoter fused to luciferase gene (alphaLuc), and human TRH promoter fused to luciferase gene (TRH-Luc) as reporters. We found that the JEG-3 cell-alphaLuc system was very sensitive to TR regulation. Using TRbeta1 wild-type (WT) expression vector, 6.2 ng/well (170 ng/10 cm dish), and 0.2 ng/well (11 ng/10 cm dish) caused maximal, and half maximal, inhibition of Luc activities in the presence of 1 nM T3. A T3 dose dependent inhibition study was also performed. From these studies, we determined that the appropriate conditions in which to study alphaLuc transactivation, in a linear portion of the dose response curve, was using 0.8 ng/well TRbeta1 expression vector and 0.1 nM T3. Under these conditions, TRbeta1 mutant R316H (GH), but not G345R (Mf), showed a weak dominant negative effect at a 1:1 ratio in the presence of 0.1 nM T3 although neither mutant had detectable T3 binding affinity. Moreover this dominant negative effect of R316H on the alphaLuc reporter was enhanced in the presence of RXRgamma. Mutant G345R showed a stronger dominant negative effect than did R316H when using a double palindromic TRE fused to herpes simplex thymidine kinase-Luc reporter as a positive TRE. These results conform to the clinical features of R316H which is associated with apparent pituitary resistance of thyroid hormone (PRTH). Mutant R316H also showed a weak dominant negative effect with TRH-Luc at a 1:1 ratio in the absence or presence of RXRgamma. However RXRgamma did not enhance the dominant negative effect as it did using alphaLuc reporter gene. Electrophoretic gel mobility shift assay (EMSA) showed that RXR alpha augmented the DNA binding affinity of wild type and R316H TRs as heterodimers on the previously reported negative TREs of glycoprotein hormone alpha promoter, suggesting that RXR does not produce its response by removing TRs from these TREs. RXR alpha augmented DNA binding affinity of TRbeta1WT, and R316H showed a weaker heterodimer band than did the wild type in EMSA. Using the TRH-Luc reporter, basal activity was increased by wild type TRbeta1. However a TRbeta1 DNA binding domain mutant, (C127S) which can not bind to DNA, did not increase the basal activity. This indicates that DNA binding of the TR is required for increasing basal activity of TRH promoter. These results indicate that (1) RXR-TR heterodimers play a role in basal transactivation and T3 suppression of negatively regulated genes, and (2) RXRs increase the dominant negative effect of some mutant TRs on specific negative TREs. (3) This effect occurs without removing TRs from the TRE. (4) The differential dominant negative effect of mutant R316H (negative TRE > positive TRE) may explain, at least in part, the presentation of R316H as PRTH. (5) Augmentation of basal activity by wild type TRs on a negative TRE requires DNA binding.  相似文献   

11.
12.
13.
Hormonal responsiveness in peripheral tissues is variable in patients with resistance to thyroid hormone (RTH). One cause of this may be differential interaction of RTH mutants of thyroid hormone receptor beta (TR beta) with TR auxiliary proteins (TRAPs). We used gel shift mobility assays to examine the interaction of wild-type and mutant TR beta s with retinoid X receptors (RXRs) and endogenous TRAPs. Some mutants showed reduced homodimerization but retained heterodimerization with recombinant RXRs. Wild-type TR beta formed heterodimeric complexes with multiple TRAPs in nuclear extracts of rat tissues, but RTH mutants showed variably altered heterodimerization with each TRAP. With liver nuclear extract, all mutants with impaired homodimerization also showed impaired TR beta-TRAP heterodimerization. Thus heterodimerizations with RXRs and TRAPs are differently affected by RTH mutations. Our results suggest that multiple TRAPs are expressed in tissue-specific patterns. The variability of TR beta heterodimerization with TRAPs may account, in part, for the variable tissue responsiveness in RTH.  相似文献   

14.
15.
Amino acid sequence analysis indicates that the human TR4 orphan receptor (TR4) is a member of the estrogen/thyroid receptor subfamily of the steroid/thyroid receptor superfamily and recognizes the AGGTCA direct repeat (DR) of the hormone response element. Here we demonstrate using the electrophoretic mobility shift assay that TR4 binds specifically to DR with a spacing of 1 and 5 base pairs (DR1 and DR5), which are the response elements for retinoic acid receptor (RAR) and retinoid X receptor (RXR), respectively. A reporter gene assay using chloramphenicol acetyltransferase demonstrated that TR4 repressed RA-induced transactivation in a TR4 dose-dependent manner. Inhibition of the retinoid signal pathway also occurs through natural response elements found in CRBPII and RARbeta genes. Our data suggest that the mechanism of repression may not involve the formation of functionally inactive heterodimers between TR4 and RAR or RXR. Instead, we show that TR4 may compete for hormone response elements with RAR and RXR due to its higher binding affinity. Furthermore, treatment of F9 murine teratocarcinoma (F9) cells with 10(-6) M all-trans-retinoic acid increased TR4 mRNA levels, and this change was accompanied by an increased amount of endogenous TR4 protein that can bind to RXRE in electrophoretic mobility shift assay. Our data therefore strongly suggest that the retinoid signal pathway can be regulated by TR4 in a negative feedback control mechanism, which may restrict retinoic acid signaling to certain elements in a cell-specific fashion.  相似文献   

16.
17.
OBJECTIVE: We wished to determine the abnormality responsible for Generalized Resistance to Thyroid Hormone in a family with this syndrome. DESIGN: Molecular biological studies were performed on a mutant human thyroid hormone receptor beta (hTR beta) cloned from fibroblasts of the patient. PATIENTS: The patient is from a previously reported family with typical features of Generalized Resistance to Thyroid Hormone, demonstrating goitre, elevated thyroid hormone levels, slightly elevated TSH, and retarded bone age. MEASUREMENTS: A cDNA for hTR beta 1 was cloned using specific oligonucleotide primers from fibroblast DNA. A mutant hTR beta 1 expression vector was constructed, and an in-vitro expressed mutant receptor was tested for T3 binding. Receptor binding to DNA was studied in a DNA cellulose assay and gel mobility shift assay. RESULTS: Two mutations were found in the cloned hTR beta. One was silent but the second changed arginine 438 to histidine. The mutation was present in RNA and genomic DNA, as shown by allele-specific amplification. The mutated receptor had reduced T3 binding affinity but demonstrated normal binding in a DNA cellulose assay and in a gel mobility shift assay. The receptor did not have altered heat sensitivity. CONCLUSIONS: In the T sibship with Generalized Resistance to Thyroid Hormone, resistance to thyroid hormone is apparently produced by a substitution of a histidine for arginine at amino acid 438, which causes reduced binding of receptor to T3, although the receptor remains able to bind to DNA and, for this reason, functions as a dominant negative in affected subjects who are heterozygous with one normal and one mutated allele.  相似文献   

18.
Expression of the human epidermal growth factor receptor (EGFR) gene is inhibited by ligand-activated thyroid hormone receptor (T3R). Binding sites for Sp1 and for the T3R.retinoid X receptor (RXR) complex overlap in a functional core of the EGFR promoter. Sp1 inhibited binding of the T3R complex to this 36-base pair (bp) EGFR element in vitro but did not affect binding of the T3R complex to a positive thyroid hormone response element (TRE). In Drosophila SL2 cells, which lack Sp1 and T3R, function of the EGFR promoter was strongly dependent on Sp1. Sp1-dependent promoter function was inhibited by ligand-activated T3R but not by mutant T3R defective in DNA or T3 binding. RXR increased the extent of inhibition. Sp1 enhanced activity of the 36-bp element placed 5' to a minimal TATA promoter and this enhancement was also repressed by T3R. Mutations in the 36-bp element were unable to separate Sp1 and T3R functions. However, addition of a second half-site 5' to the existing site in an inverted repeat configuration created a positive TRE. In the absence of ligand, T3R inhibited Sp1 stimulation from this altered element; addition of T3 reversed the inhibition. When a dimeric TRE is separated from Sp1-binding sites strong synergism was observed. The nature and location of the TRE thus strongly influence biological responses. A TRE site in the EGFR promoter that overlaps an Sp1-binding site inhibits Sp1 function but is unable to direct positive function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号