首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition effects on the sintering behavior, microstructure evolution, dielectric, and magnetic properties of BaO·(Nd0.8Bi0.2)2O3·4TiO2 (BNBT)+Bi2O3–B2O3–SiO2–ZnO (BBSZ) glass–(Ni0.28Cu0.12Zn0.6O)–(Fe2O3)0.99 (NiCuZn ferrite) composites were investigated in developing low-temperature-fired composites for high-frequency electromagnetic interference devices. An X-ray diffractometer, a scanning electron microscope, and a dilatometer were used to examine the BNBT+BBSZ glass powder to NiCuZn ferrite ratio effect on the composites densification and chemical reaction between BNBT and NiCuZn ferrite. The results indicate that these composites can be densified at 950°C with no significant chemical reactions occurring between BNBT and NiCuZn ferrites during sintering. The BNBT+BBSZ glass–NiCuZn ferrite composites sintered at 950°C exhibit excellent dielectric and magnetic properties over a wide frequency range.  相似文献   

2.
The performance parameters of Ni0.5Zn0.5Fe2O4, synthesized in the nanocrystalline form by an autocombustion method, have been investigated. The sample sintered at 1200°C, with Bi2O3 as additive shows a very high value of initial permeability μ' i of >400 at 1 MHz, with low loss. Similarly, a very high dielectric constant is obtained at lower frequencies. The results show that optimum magnetic and electrical properties can be achieved for the NiZn ferrite nanocrystalline powders synthesized by the present autocombustion method and sintered at a relatively lower temperature of 1200°C when compared with a temperature of 1400°C required for the materials synthesized by the conventional ceramic method.  相似文献   

3.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

4.
Toroids comprised of silica-coated 10 nm diameter nickel–zinc (Ni–Fe) ferrite nanoparticles (Ni0.5Zn0.5Fe2O4) have been fabricated by careful control of both the coating process and subsequent densification by viscous sintering. A narrow processing window is identified between a maximum temperature at which the nanoparticles coarsen, losing their super-paramagnetic properties, and a lower temperature required for viscous flow densification. Key to the successful fabrication was drying and cold isostatic pressing of the silica-coated nanoparticles; other routes invariably led to cracking during either drying or sintering. The super-paramagnetic blocking temperature, the coercive field, and remanent magnetization could all be controlled over a wide range by varying the thickness of the silica coating from 1 to 15 nm. The dipole–dipole coupling distance is estimated to be 4 nm. The high-frequency (1–500 MHz) properties were sensitive to the sintering temperature as well as the thickness of the silica coating. Toroids sintered at 1000°C or less exhibited no high-frequency magnetic losses and their permeability decreased with increasing temperature, suggesting that the permeability was controlled by thermally activated magnetization relaxation.  相似文献   

5.
The results obtained from the sintering of Al2O3–50TiC (in weight percent) composite in the temperature range from 1650° to 1800°C with addition of Y2O3 are presented. Densification is accelerated by the formation of liquid at temperatures above 1750°C, and 99% of theoretical density can be achieved by vacuum sintering at 1800°C for 15 min. The liquid presented at the sintering temperature is crystallized to YAG (Y3Al5O12) during cooling.  相似文献   

6.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

7.
In recent years, the materials research focuses toward synthesis of finer and finer microstructural features. The unique properties of nanosized particles outweigh their higher production costs. Precipitation in microemulsion is one technique, which promises to produce small particles of controlled size and morphology at reasonable cost. The present study demonstrates the synthesis of nanocrystalline α-Fe2O3(hematite), Mn0.5Zn0.5Fe2O4, and Ni0.5Zn0.5Fe2O4 particles in a reverse micellar microemulsion system [water–iso-octane–AOT (sodium di-2ethylhexylsulfosuccinate)]. The synthesis of α-Fe2O3 is performed to obtain baseline data for the synthesis of Mn0.5Zn0.5Fe2O4 and Ni0.5Zn0.5Fe2O4 in the microemulsion system. Nanosized, spherical α-Fe2O3, Ni-Zn ferrite, and Mn-Zn ferrite particles (20–80 nm) with very narrow particle size distribution are synthesized. Crystallization of the particles is obtained at temperatures as low as 300°C.  相似文献   

8.
Nickel–zinc ferrites of various compositions, Ni1− x Zn x Fe2O4 where x =0.2, 0.4, 0.5, and 0.6 investigated in the present work, have been prepared by the citrate precursor method. The complex permittivity (∈'− j ∈") and permeability (μ'− j μ") of the ferrites were measured at X-band (8–12 GHz) microwave frequencies. The dielectric constants or the real part of permittivity, ∈', are observed to lie in the range 5.46–8.95 for ferrites sintered at 1200°C, while those sintered at 1300°C exhibit relatively higher dielectric constants. The permittivity loss, tan δ (=∈"/∈'), is observed to be of the order of 10−2–10−3, depending upon the composition and sintering temperature of the ferrite. These losses are lower by at least one to two orders of magnitude compared with those normally reported for ferrites processed by the conventional ceramic method. The presently studied ferrites also exhibit high values of DC-resistivity, 107–1011Ω·cm. The low dielectric losses and high resistivity can be co related to small grain size and better compositional stoichiometry obtained as a result of processing via the citrate route. Magnetic properties such as the Curie temperature, saturation magnetization, initial permeability, and B – H hysteresis parameters of the compositions with x =0.5 and 0.6 are also given.  相似文献   

9.
Hydrothermal Preparation of Ultrafine Ferrites and Their Sintering   总被引:1,自引:0,他引:1  
Ultrafine and nearly spherical ferrites such as NiFe2O4, ZnFe2O4, NixZn1−xFe2O4, Mn0.5Zn0.5Fe2O4, and CoFe2O4 were prepared under mild hydrothermal conditions by precipitating from metal nitrates with aqueous ammonia. These hydrothermal ferrite powders were shown to sinter to almost theoretical density at 1000°C without any sintering aids.  相似文献   

10.
The sintering temperature of multilayer ceramic substrates must decrease to 1000° or below to avoid melting the conductors (Pd-Ag, Au, or Cu) during sintering. In this study, SiO2, CaO, B2O3, and MgO were used as additives to Al2O3 to decrease the firing temperature by liquid-phase sintering. Compositions with 18.0 and 22.5 wt% B2O3 were sintered at around 1000° in an air atmosphere to yield dense ceramics with good properties: relative dielectric contant between 6 to 7 (1 MHz), tan δ≤× 3 × 10−4 (1 MHz), insulating resistivity > 1014ω cm, coefficient of thermal expansion ∼ 7.0 × 10−6/°, and thermal conductivity ∼ 4.1 W/(m · K).  相似文献   

11.
As a lead-free positive temperature coefficient of resistivity (PTCR) material, (1– x mol%) BaTiO3– x mol% (Bi1/2K1/2) TiO3– y mol% Y2O3–0.5 mol% TiO2 (BT– x BKT–2 y Y–0.5TiO2) systems were prepared by the conventional solid-state reaction method. All samples containing <2 mol% BKT sintered in air possessed relatively low room-temperature resistivity (ρ25) and high positive temperature coefficient (PTC) effect. However, when the BKT content exceeded 2 mol%, the sample was not semiconductive after sintering in air. The effects of sintering schedule on the properties of PTCR ceramics were discussed. The results showed that the optimum composition of BT–1BKT–0.2Y–0.5TiO2, sintered at 1330°C for not-soaking and then fast quenched in air, achieved rather low ρ25 of 28 Ω·cm and a high jump of resistivity (maximum resistivity [ρmax]/minimum resistivity [ρmin]) of 4.0 orders of magnitude with T c about 155°C. The ρ25 of the as-sintered sample could be further reduced to about 10 Ω·cm by annealing in N2 at 450°C for 30 min, accompanied decrease on the PTC effect.  相似文献   

12.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

13.
The synthesis of dense sintered sialon with external additives selected from the system Y2O3–AIN–SiO2 is reported. The highest density (3.21 g/cm3) was achieved at 1750°C at 90 min of sintering with 5 wt% additive. The degree of sialon substitution increased with the amount of liquid; the YSiO2N crystalline phase formed concurrently. Strength degradation occurred above 1000°C. The fracture toughness of the material sintered with a lower amount of sintering aid remained relatively unchanged to 1200°C. The material with more additive exhibited decreased toughness above 1000°C.  相似文献   

14.
The effect of a bespoke glass sintering aid, 0.3Bi2O3–0.3Nb2O5–0.3B2O3–0.1SiO2 (BN1), developed from the base ceramic composition, BiNbO4 (BN), on the sinterability, microstructure, and microwave (MW) dielectric properties of BN ceramics has been investigated. Densities >97% theoretical could be achieved at 1020°C for samples with up to 15% BN1 additions. The resulting microstructure was composed of BN laths surrounded by a residual glass phase that contained small fibrous crystals. Some evidence of dissolution of BN crystals was observed. Optimum properties were exhibited for samples with 15 wt% of glass addition sintered for 4 h at 1020°C with a relative permittivity ɛr=38, a MW quality factor Q × f 0=17 353 at 5.6 GHz, and a temperature coefficient of resonant frequency τf=−10 ppm/°C. The high Q × f 0, ɛr, and low τf, coupled with a relatively low sintering temperature, suggest that the use of bespoke glass sintering aids of this type may have great potential for the fabrication of MW ceramics.  相似文献   

15.
A rapid thermal-processing technique was used to densify zinc-modified lead magnesium niobate (PMZN30) of the form Pb(Mg0.7Zn0.3)1/3Nb2/3O3. This dielectric composition showed relaxor behavior with a maximum permittivity near room temperature. Rapid densification was observed at temperature. Rapid densification was observed at temperatures of 1100°C and above, whereas lower temperatures showed a significant reduction of densification and electrical properties. A sintering schedule of 4 min at 1100°C with no prevention of PbO volatilization resulted in densification on the order of 90% of theoretical density and a weak field dielectric constant in excess of 14 000. Perovskite grain size was consistently in the range of 1 μm or less. The formation of pyrochlore on sample surfaces showed a direct relation to time and temperature.  相似文献   

16.
Dolomite-type borate ceramics consisting of CaZrB2O6 were synthesized via a conventional solid-state reaction route; low-temperature sintering was explored using Bi2O3–CuO additives of 1–7 wt% for low-temperature co-fired ceramics applications. For several sintering temperatures, the microwave dielectric properties and chemical resistance of the ceramics were investigated. The CaZrB2O6 ceramics with 3 wt% Bi2O3–CuO addition could be sintered below 925°C, and the microwave dielectric properties of the low-temperature samples were ɛr=10.55, Q × f =87,350 GHz, and τf=+2 ppm/°C. The chemical resistance test result showed that both CaZrB2O6- and Bi2O3–CuO-added CaZrB2O6 ceramics were durable in basic solution but were degraded in acid solution.  相似文献   

17.
Inhibition of cubic-rhombohedral phase transformation and low-temperature sintering at 1000°C were achieved for 10-mol%-Sc2O3-doped cubic-ZrO2 by the presence of 1 mol% Bi2O3. The powders of 1-mol%-Bi2O3–10-mol%-Sc2O3-doped ZrO2 were prepared using a hydrolysis and homogeneous precipitation technique. No trace of rhombohedral-ZrO2 phase could be detected, even after sintering at 1000°–1400°C. The average grain size of the ZrO2 sintered at 1200°C was >2 μm because of grain growth in the presence of Bi3+. Cubic, stabilized Bi-Sc-doped ZrO2 sintered at 1200°C had sufficient conductivity at 1000°C (0.33 S/cm) to be used as an electrolyte for a solid-oxide fuel cell (SOFC) and at 800°C (0.12 S/cm) for an intermediate-temperature SOFC.  相似文献   

18.
Silicon carbide (SiC) ceramics have been fabricated by hot-pressing and subsequent annealing under pressure with aluminum nitride (AlN) and rare-earth oxides (Y2O3, Er2O3, and Yb2O3) as sintering additives. The oxidation behavior of the SiC ceramics in air was characterized and compared with that of the SiC ceramics with yttrium–aluminum–garnet (YAG) and Al2O3–Y2O3–CaO (AYC). All SiC ceramics investigated herein showed a parabolic weight gain with oxidation time at 1400°C. The SiC ceramics sintered with AlN and rare-earth oxides showed superior oxidation resistance to those with YAG and Al2O3–Y2O3–CaO. SiC ceramics with AlN and Yb2O3 showed the best oxidation resistance of 0.4748 mg/cm2 after oxidation at 1400°C for 192 h. The minimization of aluminum in the sintering additives was postulated as the prime factor contributing to the superior oxidation resistance of the resulting ceramics. A small cationic radius of rare-earth oxides, dissolution of nitrogen to the intergranular glassy film, and formation of disilicate crystalline phase as an oxidation product could also contribute to the superior oxidation resistance.  相似文献   

19.
Low-Temperature Sintering of Lead-Based Piezoelectric Ceramics   总被引:3,自引:0,他引:3  
The low-temperature sintering of lead-based piezoelectric ceramics has been studied. The sintering temperature of lead zirconate titanate (PZT) ceramics could be reduced from ∼ 1250° to ∼960°C by the addition of a small amount of the lower-melting frit, B2O3–Bi2O3—CdO. It exhibited the following dielectric and piezoelectric properties: Kp= 0.52 to 0.58, Qm= 1000, εT330= 800 to 1000, tan δ= 50 × 10−4, ρ= 7.56 to 7.64 g/cm3. Ceramics with the aid of suitable dopants (CdO, SiO2, and excess PbO) in the Pb-(Ni1/3Nb2/3)O3—PZT family could be sintered at 860° to 900°C. For these materials, Kp= 0.56 to 0.61, Qm= 1000, εT330= 1500 to 2000, tan δ≤ 50 × 10−4, ρ= 7.80 to 8.03 g/cm3. The microstructure, sintering mechanism, and the effects of various impure additions have been analyzed by means of scanning electron microscopy, scanning transmission electron microscopy, electron probe microanalysis, and X-ray photoelectron spectroscopy.  相似文献   

20.
The effect of rare-earth oxide additives on the densification of silicon nitride by pressureless sintering at 1600° to 1700°C and by gas pressure sintering under 10 MPa of N2 at 1800° to 2000°C was studied. When a single-component oxide, such as CeO2, Nd2O3, La2O3, Sm2O3, or Y2O3, was used as an additive, the sintering temperature required to reach approximate theoretical density became higher as the melting temperature of the oxide increased. When a mixed oxide additive, such as Y2O3–Ln2O3 (Ln=Ce, Nd, La, Sm), was used, higher densification was achieved below 2000°C because of a lower liquid formation temperature. The sinterability of silicon nitride ceramics with the addition of rare-earth oxides is discussed in relation to the additive compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号