首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米纤维素晶体(NCC)可由可再生资源制备,并且具有诸多特性,近年来成为研究热点。本文应用PFI磨对竹子溶解浆预处理,用纤维素酶水解制备纳米纤维素晶体,研究了酶解时间、酶解温度、酶用量对纳米纤维素晶体产率的影响,采用正交实验优化了工艺参数。并用扫描电镜、激光粒度仪、傅里叶红外、热重对原料及NCC进行性能表征。结果表明:在酶用量8m L、酶解时间3d、酶解温度50℃的条件下,纳米纤维素晶体的产率最高,达到19.13%。PFI磨预处理及酶解均可细化纤维素,NCC的Z均粒径为375.5nm,所制备的NCC保持了原料的基本化学结构,NCC的热稳定性低于原料,但其热分解残余率增大。  相似文献   

2.
采用纤维素酶法制备香蕉皮纳米纤维素。研究酶解时间、纤维素酶浓度、酶解温度3个因素对香蕉皮纳米纤维素产率的影响,通过响应曲面分析方法优化其酶解工艺,得到纤维素酶法制备香蕉皮纳米纤维素的最佳合适的工艺条件。结果表明:最佳条件为温度60℃,酶浓度200μ/mL,酶解时间180min,产率为53.08%。  相似文献   

3.
本研究以微晶纤维素为原料,经过超微粉碎预处理后,通过酶解辅助高压均质的方法制备纳米纤维素,研究纳米纤维素的结构和理化性质,并通过扫描电镜、透射电镜、红外光谱、X-射线衍射和热失重分析对纳米纤维素进行表征。结果表明,超微粉碎前处理能使微晶纤维素颗粒大小形状趋于均一化;所制备的纳米纤维素呈束状结构,颗粒直径为15~40 nm;纳米纤维素在制备过程中纤维素结构未遭到破坏;纳米纤维素的结晶度为58.1%,仍属于纤维素Ⅰ型;纳米纤维素的起始热分解温度比微晶纤维素的分解温度低,当温度达到500℃时,纳米纤维素的热失重率为82.9%。因此通过酶解辅助高压均质制备的纳米纤维素有望在可降解复合材料中得到应用。  相似文献   

4.
纳米微晶纤维/聚乙烯醇复合薄膜的制备及性能   总被引:2,自引:0,他引:2  
采用蔗渣为原料制备出粒径大小为20~50nm的纳米微晶纤维素(NCC),并用溶胶/凝胶方法制备出不同NCC含量的纳米微晶纤维素/聚乙烯醇(NCC/PVA)复合薄膜,重点研究了NCC加入量对复合薄膜综合性能的影响。结果表明,NCC的加入能使薄膜的热稳定性有所提高,当NCC的添加量在0.5%时,聚乙烯醇薄膜的拉伸强度提高了115%,吸水性降低了12.0%,断裂伸长率减少了68%。  相似文献   

5.
以市售棕榈油(熔点为5℃)为乳化对象,利用棉短绒来源的1%纳米微晶纤维素(NCC)水分散液对其进行Pickering乳化(水相∶油相=7∶3,v∶v),分析不同酸解时间制备的NCC的乳化效果;同时,以游离脂肪酸的释放量为指标,研究NCC乳化液在模拟胃肠道中的消化行为。结果表明,酸解时间为3.0 h的NCC的Pickering乳化效果最好,不同酸解时间的NCC的Pickering乳液粒径均主要集中于1~10μm。NCC乳化液体外消化实验表明:1%的NCC形成的乳化液在肠液消化2 h时的游离脂肪酸释放量为830μmol/L,同样条件下,棕榈油对照组的游离脂肪酸释放量为480μmol/L。NCC含量越高,游离脂肪酸释放量越高,表明NCC乳化有助于脂肪的消化。纳米微晶纤维素的Pickering乳化特性在功能性脂肪酸及脂性活性物质的承载与传递中具有潜在的应用。  相似文献   

6.
采用球磨辅助固体酸水解法制备了纤维素纳米微晶,对球磨条件及酸水解条件进行了系统研究,同时对所得纤维素纳米微晶进行了性能表征。结果表明,采用机械力化学-球磨预处理可活化纤维素原料;采用草酸对球磨预活化后的纤维素原料水解提取纤维素纳米微晶,发现球磨处理2. 5 h后,采用70%的草酸在90℃下水解5 h,得到的纤维素纳米微晶尺寸在200~300 nm,产率在61%左右;此外,草酸可通过简单方法进行回收,回收的草酸可继续用于水解制备纤维素纳米微晶。  相似文献   

7.
多种酶法处理提高马铃薯回生抗性淀粉制备率   总被引:4,自引:1,他引:4  
以马铃薯淀粉为原料,以抗性淀粉制备产率为考察指标,研究α–淀粉酶、糖化酶和纤维素酶种类、酶加量、酶解时间、酶解温度、酶解pH、多种酶最佳配比及酶解顺序对RS3型抗性淀粉制备产率影响。固定条件:淀粉乳10%,高压温度120℃,高压时间30min,老化温度4℃,老化时间12h,糖化酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:糖化酶加量为1,200U/mL,酶解时间为60min,pH为5.0,酶解温度为55℃,制备产率达8.862%;纤维素酶单独处理制备马铃薯回生抗性淀粉最佳酶解工艺条件为:纤维素酶加量为40U/mL,酶解时间为45min,pH为5.0,酶解温度为35℃,制备产率达17.748%。α–淀粉酶、糖化酶和纤维素酶两两联合处理、三种酶共同处理均使马铃薯回生抗性淀粉制备产率降低;而纤维素酶处理可大大提高马铃薯回生抗性淀粉制备产率。RS3制备过程系为通过破坏纤维素等阻隔淀粉分子聚集的非淀粉物质提高制备产率,比将淀粉分子分解从颗粒结构中释放出以提高RS3制备产率更为有效。  相似文献   

8.
以纳米微晶纤维素(NCC)为骨架,甲基丙烯酸六氟丁酯为单体,通过乳液接枝聚合合成新型表面施胶剂,并进行表面施胶的应用研究。考察乳化剂用量和含氟单体与NCC质量比对接枝率、接枝效率和单体转化率的影响;在较优条件下改性NCC接枝率、接枝效率、单体转化率分别为125.2%、27.7%、90.1%。通过红外光谱进行接枝前后NCC的官能团变化分析。通过纳米粒度仪分析了未改性/改性NCC的Zeta电位及粒径变化;结果表明,所得改性NCC在乳液体系中具有良好的稳定性;将其用于表面施胶,施胶处理后的纸张接触角能够达到120°,抗张指数较使用未改性NCC的纸张可提高26.4%,达到22.0 N·m/g。  相似文献   

9.
《食品与发酵工业》2019,(20):202-208
该文以丰都红心柚的中果皮为原料,采用硫酸水解法制备柚皮纳米纤维素(nano-crystal cellulose,NCC)。以H2SO4浓度、反应温度、反应时间对得率的影响进行单因素试验和响应面优化分析,并对制备出的纳米纤维素结构进行扫描电镜、红外光谱和X-射线衍射等分析。在H2SO4质量分数为62%、反应温度为50℃、反应时间为78 min的条件下制备出的NCC得率最高,为63. 27%。通过扫描电镜观察得知柚皮NCC呈类球状结构均匀分布,粒径在100~200 nm;由红外光谱和X射线衍射鉴定出样品为纤维素Ⅰ型结构,结晶度达到53. 75%。相较于柚皮微晶纤维素(microcrystalline cellulose,MCC),制备出的NCC具有更规则的结构、更大的比表面积和更高的结晶度,使柚皮纤维素具有了更高的应用价值。  相似文献   

10.
以茶渣为原料,采用盐酸水解法制备茶渣微晶纤维素。通过单因素试验研究了酸解时间、酸解温度、盐酸浓度及料液比对微晶纤维素得率、聚合度和结晶度的影响,采用正交试验优化了工艺参数,并运用X-射线衍射和红外光谱对微晶纤维素产品进行表征。试验结果表明:最佳制备工艺条件为酸解温度95℃、盐酸质量分数8%、酸解时间90 min、料液比1∶16(g/mL)。各因素对得率影响的显著性为:酸解温度盐酸浓度酸解时间料液比;在此条件下,茶渣微晶纤维素产品的得率为54.34%,聚合度为128;X-射线衍射和红外光谱分析表明,茶渣微晶纤维素与原纤维素材料结构一致,结晶度达67.77%,晶粒尺寸为3.98 nm,晶型为纤维素Ⅰ型。  相似文献   

11.
王硕  李森  李嘉怡  陈誉  罗磊 《食品与机械》2021,37(10):150-154
目的:利用咖啡果壳制备高吸附能力微晶纤维素。方法:用酸解法制备咖啡果壳微晶纤维素,考察酸解时间、酸解温度、盐酸质量分数和料液比对微晶纤维素得率和吸附能力的影响。结果:咖啡果壳微晶纤维素的最佳制备工艺为酸解时间95 min,盐酸质量分数16%,料液比(m咖啡果壳纤维素∶V)1∶22 (g/mL),酸解温度60 ℃,该工艺条件下咖啡果壳微晶纤维素得率为80.08%,对香精的吸附能力为0.89 g/g。结论:料液比对咖啡果壳微晶纤维素得率影响最大,酸解温度对其吸附能力影响最大,优化工艺得到的咖啡果壳微晶纤维素得率高,吸附能力强。  相似文献   

12.
以胡萝卜渣为原料,采用酸水解法制备微晶纤维素,考察了酸浓度、酸解时间以及酸解温度对微晶纤维素得率的影响。通过单因素和正交试验结果分析确定优化工艺条件,并对制备的微晶纤维素性能进行分析。结果表明:优化的工艺条件是,酸浓度为6%、酸解时间60min、酸解温度80℃,微晶纤维素的得率为33.8%。  相似文献   

13.
以大豆皮为原料,采用酸解法制备大豆皮微晶纤维素。通过单因素实验和L9(43)正交实验,研究了料液比、硫酸浓度、酸解时间、酸解温度对制备大豆皮微晶纤维素得率及聚合度的影响。实验结果表明:酸解温度是影响大豆皮制备微晶纤维素的最重要因素,其次是硫酸浓度,酸解时间跟料液比在此实验范围内对测定结果的影响较小,制备大豆皮微晶纤维素的最佳工艺为温度95℃、硫酸浓度3%、酸解时间60min、料液比为1:10(g/mL)。在此最佳条件下,微晶纤维素的得率达到30.12%,聚合度为312。  相似文献   

14.
纳米纤维素的制备及应用   总被引:3,自引:3,他引:3       下载免费PDF全文
介绍了机械法制备微纤化纤维素(MFC)和化学法、生物法制备纳米微晶纤维素(NCC)及纳米纤维素在制浆造纸领域的潜在应用,并对纳米纤维素未来研究重点进行了总结。  相似文献   

15.
明悦  陈英  车迪 《纺织学报》2016,37(6):1-6
为了开发一种无氟环保的拒水整理方法,采用酸解法制备纳米微晶纤维素(NCC),并将其协同有机硅拒水剂二浴法整理棉织物。优化了NCC制备条件,并通过红外光谱、X射线衍射、热失重等测试手段对其结构及热性能进行分析;探讨了NCC粒径及整理工艺参数对有机硅拒水剂拒水效果的影响。结果表明,NCC最佳的制备范围为:H2SO4质量分数为60%-65%,温度为40-50℃,反应时间为2-3h;NCC协同有机硅拒水整理时,当NCC粒径在260nm时,织物拒水效果明显提高,达到95分以上,经扫描电镜观察,NCC在织物表面形成粗糙结构。NCC协同有机硅拒水整理最佳工艺参数为:NCC烘干时间180s、拒水整理焙烘时间90s、焙烘温度160℃。  相似文献   

16.
探究了纳米微晶纤维素对海藻酸盐-淀粉复合薄膜的增强效果。以脱脂棉为原料,采用化学预处理结合超声破碎法制备纳米微晶纤维素(NCC);以马铃薯淀粉与海藻酸钠为成膜基材,以甘油为增塑剂,将NCC作为增强组分,通过流延法制备复合薄膜。微观形貌观察表明,脱脂棉NCC呈棒状,直径30 nm左右,长径比约为8;对复合膜的机械性能、阻隔性能、光学性能、水溶性、热稳定性和红外光谱检测表明,当NCC的添加量为5%(w/w)时,可以有效提高复合膜的拉伸强度、水溶时间和热稳定性,降低复合膜的透湿系数,而对复合膜的透光性影响不大。  相似文献   

17.
为了提高甘薯加工副产品的高值化利用,以甘薯渣纤维素为原料,应用超声波辅助酸法制备纳米薯渣纤维素。通过对超声波功率、酸体积分数、酸解温度和酸解时间4个影响因素进行单因素及正交试验,获得了纳米薯渣纤维素的最佳制备条件,并通过透射电镜和X-射线衍射对其进行进一步的分析。结果表明:纳米薯渣纤维素制备的最佳工艺参数为超声波功率120 W、酸体积分数65%、酸解温度55℃、酸解时间120 min,此条件下纳米薯渣纤维素的产率为42.85%;纳米薯渣纤维素的形态表现为不规则球状,粒径在20~40 nm范围内,并且其仍具有纤维素的晶型,结晶度有明显的提高。  相似文献   

18.
采用盐酸水解法制备柚皮微晶纤维素,通过单因素试验,分别考察HCl浓度、酸解时间、酸解温度对柚皮微晶纤维素制备工艺的影响。在此基础上,通过正交试验优化制备工艺条件,并确定了柚皮微晶纤维素制备工艺的最佳条件:HCl体积分数为8%、酸解温度为60℃、酸解时间为80 min。利用红外光谱、X衍射、扫描电镜对柚皮微晶纤维素晶型结构、微观形态进行表征。柚皮微晶纤维素为纤维素I型结构,相对结晶度为71.26%,表面形态粗糙,呈长杆状。  相似文献   

19.
竹子溶解浆经植物粉碎机预处理,再用硫酸水解制备纳米纤维素晶体(NCC)。利用马尔文激光粒度仪、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、红外光谱(FTIR)、热重分析仪(TGA)对原料及纳米纤维素晶体的尺寸、形貌、晶体特性、结构和热性能进行表征。结果表明:NCC的Z均粒径为128.7nm;竹浆经机械粉碎部分纤维长链被切断;由TEM图观察可知NCC为棒状,直径5~10nm,长度100~200nm;竹浆及NCC属于纤维素Ⅰ型,结晶度由竹浆的64.27%提高到72.04%;FTIR图谱表明竹浆与NCC化学结构基本一致;TGA分析表明NCC的热稳定性低于竹浆,但NCC的降解速率较竹浆缓慢,并且NCC的热解残余率增大。  相似文献   

20.
以玉米秸秆为原料,研究其提取制备微晶纤维素的工艺及产品性能。探讨酸解温度、硫酸体积分数、酸解时间对微晶纤维素聚合度及得率的影响,并对微晶纤维素的理化性质进行了分析。结果表明:玉米秸秆微晶纤维素最佳制备工艺条件为:反应温度85℃,硫酸体积分数8%,水解时间90 min,此时制得微晶纤维素聚合度为292,纯度92.6%,得率76.48%,结晶度为74.5%。在此条件下,玉米秸秆微晶纤维素在保留形态结构的同时具有较高的结晶度和热稳定性,具备较好的应用性能和价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号