首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The design of fluid bed gas distributors may have a marked influence on the performance of a fluid bed reactor. The primary physical reason for this influence is that the distributor design influences the hydrodynamics and thus the gas/solid contacting pattern in the fluidized bed.

In the paper presented here the influence of distributor design on mass transfer and chemical reaction has been investigated systematically in fluid bed reactors with diameters of 0.2 and 1.0 meter. Coefficients of mass transfer between the bubble phase and the suspension phase were determined from chemical conversion and tracer gas residence time distribution measurements. In the experimental program the height of the fluidized bed was varied between 0.3 m and 0.9 m with superficial gas velocities in the range of 0.06 m/s to 0.30 m/s.

The comparison of the experimental results with a suitably modified and extended two-phase model yields quantitative relationships which allow to account for the influence of the gas distributor in the design of fluid bed chemical reactors.  相似文献   

2.
Effects of the continuous phase velocity (0.01-0.08 m/s(, the dispersed phase velocity (0.0-0.04 m/s) and particle size (1.0-3.0 mm) on the individual phase holdups and the mass transfer coefficient have been determined in two (liquid-liquid) and three (liquid-liquid-solid) phase fluidized beds.

In the beds, the dispersed phase holdup increased with dispersed phase velocity but it decreased with continuous phase velocity. Whereas the continuous phase holdup decreased with dispersed phase velocity but it increased with continuous phase velocity. The bed porosity increased with both the dispersed and continuous phase velocities in the beds of 1.7 and 3.0 mm particles. In addition, the continuous phase holdup decreased with the presence of solid particles in the bed, however, the dispersed phase holdup was not affected by the presence of the particles.

The overall mass transfer coefficients in the continuous and dispersed phases increased with increasing fluid velocities but it decreased with the bed height.

The continuous phase holdup and mass transfer coefficient data have been correlated with the operating variables and the dimensionless groups.  相似文献   

3.
The mechanism of combustion of carbon in shallow fluidized beds at temperatures 750-1000°C is studied by measuring burning rates and temperatures of spherical carbon particles ranging from 2 mm to 12 mm diameter directly in an experimental fluidized bed. Among variables investigated were inert particle size, superficial fluidizing velocity, temperature, the influence of neighbouring active particles and oxygen concentration in the fluidizing gas.

Under the experimental conditions explored, combustion was mainly kinetically controlled, so that with carbon particles larger than about 4 mm, burning rates are significantly higher than those predicted by combustion models which assume combustion to be controlled by the rate at which oxygen diffuses through a stagnant particulate phase surrounding the burning particle. The higher burning rate seems to arise because the greater mobility of particles in the bed causes the restriction to oxygen flow to the carbon surface offered by the particulate phase to be reduced and has important consequences for combustor design.

Measured carbon particle temperatures were influenced considerably by bed operating conditions ranging from 15 to 215°C higher than bed temperature.

Measured burning rates of carbon particles were found to be reduced significantly when other active particles were present in the bed. This sensitivity of burning rate to changes in active particle concentration in the bed was shown to be increasingly important once the concentration of carbon in the bed exceeded about 1%

Increasing the bed inert particle size, superficial fluidizing velocity, oxygen concentration in the fluidizing gas and bed temperature resulted in higher burning rates. The implication of these findings on combustor design are discussed.  相似文献   

4.
Experimental investigations were carried out in model external-loop airlift reactors. Two reactors of laboratory scale (riser liquid height ranged between 1.16-1.56 m, riser diameter 0.03 m, AD/AR ratio between 0.111-1,000, total liquid volume VT = (1.189-2.446).10-3m3) and pilot-plant scale (riser liquid height of 4.4 and 4.7 m, respectively, riser diameter 0.200 m, AD/AR ratio of 0.1225 and 0.040 m, total liquid volume, VT = (0.144-0.170) m3) were used.

The influences of reactor geometry characterized by some parameter as: AD/AR ratio, liquid height in riser and downcomer and liquid height in gas separator, together with the amount of introduced air, on the basic hydrodynamic design parameters: gas holdup and liquid circulation velocity were analysed.

The influence of gas sparger design on gas holdup and liquid velocity was found to be negligible.

The experimental liquid circulation velocity was correlated using a simplified form of the energy balance in airlift reactors, valid for external-loop airlift reactors with almost complete phase separation at the top.

An original dimensionless correlation for gas holdup prediction involving superficial velocities of gas and liquid, cross sectional areas, dispersion height, riser diameter, as well as Froude number, was obtained.  相似文献   

5.
Ignition of activated carbon particles were measured in a vertical tube reactor of 4 cm ID, where single particles fell consecutively through a gas mixture containing oxygen.

A two dimensional fluidized bed reactor 24 cm wide, 51 cm high and 2.5 cm in thickness was used for visual observation through a wide front window 24 cm × 35 cm covered with a silica glass plate 1 cm thick. Activated carbon particles were fluidized incipientiy by air, and a gas mixture containing oxygen was injected upwards into the bed through a nozzle positioned 5 cm above the distributor, forming single bubbles intermittently.

It was observed that carbon particles dispersed in rising bubbles were ignited abruptly at emulsion phase temperatures above 550°C. Experimental findings from the fluidized bed were compared with those from the tube reactor, suggesting that the igniting conditions for particles dispersed in bubbles are nearly the same as for single particles falling in the tube reactor.  相似文献   

6.
Mathematical modelling of fluidized bed reactors . Among the many fluidized bed models to be found in the literature, the two-phase model originally proposed by May has proved most suitable for accommodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two-phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by other authors. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo-homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale-up calculations. Its use is illustrated with the aid of design diagrams.  相似文献   

7.
8.
The solid-solid mass transfer performance of an external-loop airlift reactor was measured by dissolution of benzoic acid coated on nylon-6 particles, and the hydrodynamics of the gas-liquid-solid multiphase system in the airlift reactor were investigated. The solid-liquid system was designed to simulate the micro-carrier culture of animal cells, and some typical suspensions of immobilized enzyme particles.

The solid-liquid mass transfer coefficient remained constant below a superficial air velocity of 0.04 ms-1 for the particles examined, but increased rapidly with further increase in gas velocity. Solids loading (0.3-3.5% w/w) did not affect the mass transfer coefficient in turbulent flow.

The mass transfer coefficient was correlated with energy dissipation rate in the airlift reactor. The mass transfer coefficient in stirred vessels, bubble columns, fluidized beds, and airlift reactors was compared.

Over an energy dissipation Reynolds number of 4-400, the solid-liquid mass transfer coefficient in the airlift device was comparable to that obtainable in fluidized beds. The performance of the airlift was distinctly superior to that of bubble columns and stirred tanks.  相似文献   

9.
The properties of bubbles in a bench-scale fluidized bed reactor, 30 cm in diameter, during coal combustion were determined by means of a newly developed cooled bubble probe and a data processing system at temperatures up to 850°C and fluidization indexes up to 10 in axial and radial positions in the bed. The fluidization index above 4 and the temperature have only slight effect on the bubble properties. Their variation along the height above the gas distributor is dominant.

Oxygen and Co2-concentration profiles were measured in the bed and in the freeboard, and the o2-profiles were calculated by means of measured bubble data and bubble models. A comparison of measured and calculated o2-profiles indicates that the mass transfer rates between the emulsion and bubble phases are larger than the ones calculated by the models.  相似文献   

10.
The gas phase mixing in a fluidized bed of glass beads (dp = 0.362 mm) in the slugging and turbulent flow regimes has been studied in a 0.1 m-ID × 3.0 m high Plexiglas column.

The gas dispersion in the downstream of the bed has been described by a diffusion process with the axial and radial dispersion coefficients. The radial dispersion coefficient of the gas phase is nearly constant with the variation of gas velocity in the slugging flow regime, but it increases with an increase in gas velocity in the turbulent flow regime.

Appreciable backmixing of the gas phase is pronounced in the slugging flow regime whereas the lower gas backmixing is produced in the turbulent flow regime. The gas backmixing coefficient increases with an increase in gas velocity in the slugging flow regime, but it decreases slightly with an increase in gas velocity in the turbulent flow regime.

The radial mixing and backmixing coefficients of the gas in terms of Peclet numbers have been correlated with the relevant dimensionless parameters (Ug/Umf, ps/pg, dp/Dt).

The gas flow pattern in the bed has been well represented by a simplified model based on the two gas phases in the dilute and dense phases which are percolating through the bed in plug flow. The present model can predict the gas exchange coefficient between the phases, the fractions of the dilute phase, the interstitial gas in the dense phase, and the interstitial gas velocity in the bed.  相似文献   

11.
This paper deals with the sublimation of large bodies, or “objects”, made up from a pure substance in a bubbling gas fluidized bed of considerably smaller particles, or “fines”. The influence of such parameters as the gas velocity, the bed temperature, the size and the adsorption capacity of the fines has been investigated.

The results obtained clearly show that the rate of sublimation in fluidized beds is far higher than in air alone. It increases with increasing bed temperature, decreasing particle size, increasing powder mass capacity, and roughly varies as a parabolic function of time. It has also been observed that the temperature difference between the bed and the object surface, or “temperature depression”, depends on the fines characteristics as well as on bed temperature, but is independent of gas velocity when good solid mixing conditions are achieved.

Bed-to-object heat and mass transfer coefficients have been deduced from data points and attempts have been made to provide a reasonable theory to account for them. After a complete examination, the idea of interpreting transport phenomena based on a well-adapted “surface renewal model” has been proposed.  相似文献   

12.
介绍了应用于有机硅单体合成中的流化床反应器的工作原理及其技术的进展和国内外现状,分析了现有的流化床反应器内部换热结构及底部气体分布器,并指出了的主要优缺点。在此基础上重点介绍了一种新型有机硅单体流化床反应器以及改进的指管束二级管盘式导热油均布器。该设备的特点是:指管束中的导热油并联直流,取热均匀;能耗低,采用了催化剂直接回床技术,代表了有机硅流化床反应器新的发展方向。  相似文献   

13.
The evaluation of the heat transfer coefficient hwp between a heat exchanging surface immersed in a gas fluidized bed and the adjacent layer of dense phase particles is analyzed in this contribution. Gas convective and radiant effects are not included in the present analysis.

The inclusion of hwp, or an equivalent formation, in mechanistic models describing heat transfer has been necessary because the sudden voidage variation close to the immersed wall restrains significantly the heat transfer rate. However, there is not at present a widely accepted expression to evaluate hwp.

A precise formulation for hwp accounting for transient conduction inside spherical particles, the Smoluchowski effect, the concentration of particles in the adjacent layer (Np) and an effective separation gap (l0) is developed here.

Although Np can be estimated, in principle, from experimental evidence in packed beds, and it is reasonably expected that l0 = 0, the analysis of experimental heat transfer rates in moving beds, packed beds, and bubbling fluidized beds indicate that values of hwp are, in general, smaller than expected from these assumptions. Appropriate values of l0 and Np are then stimated by fitting the experimental data.

The probable effect of surface asperities is also discussed by analyzing a simplified geometrical model. It is concluded that the parameter l0 can be also effective to account for particle roughness, independently of thermal properties.  相似文献   

14.
Design and operation of a circulating fluidized bed requires the knowledge of fluid mechanics. According to heat and mass transfer as well as chemical reactions, the effect of the set superficial gas velocity on the axial pressure profile is of particular interest. The axial pressure profile was measured for a variety of solids, as a function of the superficial gas velocity, in a cylindrical circulating fluidized bed with an inner diameter of 0.19 m and an overall height of 11.5 m. Depending on the solids content and superficial gas velocity, two or one sections can be observed in the plant where the pressure gradient is constant. A pressure profile with one pressure gradient exists only at high gas velocities, so long as the acceleration pressure drop immediately above the gas distributor is negligible. Comparison of measured pressure drops in circulating fluidized beds with those measured in vertical pneumatic conveying led to a state diagram for vertical gas-solid flows. The operation behaviour of different types of circulating fluidized bed plants can be explained with the aid of this diagram.  相似文献   

15.
The hydrodynamics induced by perforated, punched, and mesh (Dutch weave) distributor plates have been studied using dry placebo pharmaceutical granule in a conical fluidized bed dryer at inlet superficial gas velocities of 0.5 to 3.5 m/s. For superficial gas velocities up to 2.0 m/s, the punched plate design leads to improved hydrodynamics based on reduced bubble frequencies and limited segregation. Beyond 2.0 m/s, the influence of gas velocity supersedes that of distributor design, as coalescence dominates the hydrodynamic behavior resulting in low-frequency, high-intensity spectral density distributions for all distributor designs.  相似文献   

16.
A fluidized bed of magnetic particles, such as iron or magnetite, can be stabilized by applying an external magnetic field, as was shown earlier by Rosensweig and coworkers. The stabilization results in a suppression of bubble formation, little solids mixing and a much narrower residence time distribution of the gas flow; the gas flow rate in the dense phase is increased. In this experimental study the axial and radial mixing coefficients in the gas flow were determined as functions of several variables, such as gas flow rate and magnetic field strength. It appeared that the radial mixing coefficient is comparable to that in a fixed bed, and the axial mixing coefficient was greater than in a fixed bed but smaller than in a fluidized bed without stabilization. The axial mixing is the result of some channelling.

The mixing of the solids is very low, and if there is a continuous solids flow through the bed, deviations from plug flow can be reduced by increasing the magnetic field strength.

Apparently, the magnetically stabilized fluidized bed is well suitable for countercurrent gas-solid operations.  相似文献   

17.
On the basis of the physical and chemical performance of Huadian oil shale and the design experience of Huadian 65 t/h oil shale-fired circulating fluidized bed (CFB) boiler operation, this paper introduces several main characteristics of oil shale, such as platy structure, high volatile and Ca/S content, and low ignition temperature, which are relevant to the design of CFB boiler, and analyses key design technologies of large-scale oil shale-fired circulating fluidized bed boiler. The design principles of large-scale oil shale-fired CFB boiler are suggested: (1) to adopt a II-shape configuration natural circulation mode with medium-temperature cyclone with downward gas exhaust, reliable antiwear technology and self-desulfurization technology; (2) to determine a circulating ratio of 6, hot state superficial air velocity of 5–6 m/s, combustion portion of about 0.5–0.6 in dense phase zone, and air velocity at the nozzle hole of air cap of 50–60 m/s; (3) to adopt an igniting system with hot gas generator below distributor plate and oil guns as auxiliary ignition device above distributor plate, and fluidized bed ash cooler retrieving the heat taken by hot slag. Lastly, the design scheme of 420 t/h superhigh pressure oil shale-fired CFB boiler is put forward and the general configuration and technical data are given at the end of this paper.  相似文献   

18.
以流化床应用为代表的气固流动系统是许多化工过程中的重要组成部分 ,CFD( computational fluid dynamics)方法能够为其优化设计和放大提供所需要的信息 .本文采用双欧拉模型 ,与 Gidaspow等的实验结果进行了对比 ,模拟了二维射流流化床内气泡的形成规律 ,得到了带锥型分布器的流化床内瞬时空隙率和气固相速度分布等流体力学参数 .对锥型分布器流化床的实验结果表明 ,模拟得到的气泡的形状与实验现象相接近 .  相似文献   

19.
《分离科学与技术》2012,47(11):1788-1796
A model approach is presented here to obtain sorption isotherms that are connected with a low cost breakthrough analysis for dry desulphurization of flue gas in a fluidized bed reactor. Experiments were conducted at different temperatures (600–900°C) providing constant feedstock concentration (0.6% SO2). The fluidizing gas entered the bed through a distributor and fluidized the single charge of 15 g sorbent. The space velocity ranged from 3100 to 5700 h?1. Each run was terminated when the steady state was reached. Sulfate layer thickness was calculated from conversion ratio and the structural parameter. Inserting this value and the particle size parameter into the mass transfer equation then extracted the process parameters. Equilibrium relationships involving these parameters were compared with different isotherms. The agreement between the experimental and predicted values of the sorption isotherms validated the model. The latter may be successfully used to design reactors for e.g., sulfating or desulphurization.  相似文献   

20.
Bed expansion occurs during the operation of gas‐fluidized beds and is influenced by particle properties, gas properties and distributor characteristics. It has a significant bearing on heat and mass transfer phenomena within the bed. A method of predicting bed expansion behavior from other fluidizing parameters would be a useful tool in the design process, dispensing with the need for small‐scale trials. This study builds on previous work on fluidized beds with vertical inserts to produce a correlation that links a modified particle terminal velocity, minimum fluidizing velocity and distributor characteristics with bed voidage in the relationship with P as the pitch between holes in the perforated distributor plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号