首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic properties of sp3-hybridized ultra-dispersed diamond and sp2-hybridized onion-like carbon in the oxidative dehydrogenation of ethylbenzene to styrene were investigated, highlighting the structure sensitivity of the reaction. The sp3-carbon led initially to C-C cleavage and benzene formation, while a switchover of the main reaction pathway into the styrene formation occurred with time on stream due to the formation of surface sp2 carbon, required for the selective styrene formation. This was confirmed by the behavior and the high stable styrene selectivity shown by onion-like carbons. High temperature oxygen pre-treatment created catalytically active species at the sp2 carbon surface, confirming that a high thermal stability carbon-oxygen complex was the active surface site for forming styrene.  相似文献   

2.
《Applied catalysis》1989,46(2):241-249
The hydrotreatment of some aromatic amines was studied at temperatures ranging from 400 to 450°C and PH2=1 atm under flow conditions. Hydrogenolysis of aromatic amines involves direct cleavage of the C(sp2)N bond without saturation of the aromatic ring. The presence of hydrogen sulphide in the reaction stream has a promotional effect on the hydrogenolysis of C(sp3)N bond and an inhibitive effect on the hydrogenolysis of C(sp2)N bond. The use of a saturated hydrocarbon as diluent facilitates CN bond hydrogenolysis in the presence of hydrogen, irrespective of the carbon being sp2 or sp3 hybridized.  相似文献   

3.
Homogeneous (Cu2+ ions) and heterogeneous (Cu2+-pillared clay) Fenton-like catalysts have been compared in the conversion of p-coumaric acid. The performances of the two classes of catalysts are similar for an analogous amount of copper, but there are some relevant differences in terms of (i) the presence of an induction time, (ii) the turnover frequency, (iii) the efficiency in the use of H2O2, (iv) the initial attack of p-coumaric acid (hydroxylation on the aromatic ring or oxidative attack on the double bond of the lateral chain), and (v) the effect of dissolved oxygen on the removal of total organic carbon (TOC). These differences were interpreted in terms of reaction network of generation of radical oxygen species and of organics conversion. The possible formation of a surface peroxo adduct coordinated to a copper binulcear site was also evidenced for the solid heterogeneous catalyst.  相似文献   

4.
In this study the efficiency of electrochemical oxidation of aromatic pollutants, such as reactive dyes, at boron-doped diamond on silicon (Si/BDD) electrodes was investigated. The level of [B]/[C] ratio which is effective for the degradation and mineralization of selected aromatic pollutants, and the impact of [B]/[C] ratio on the crystalline structure, layer conductivity and relative sp3/sp2 coefficient of a BDD electrode were also studied. The thin film microcrystalline electrodes have been deposited on highly doped silicon substrates via MW PE CVD. Si/BDD electrodes were synthesized for different [B]/[C] ratios of the gas phase. Mechanical and chemical stability of the electrodes was achieved for the microcrystalline layer with relatively high sp3/sp2 band ratio. Layer morphology and crystallite size distribution were analyzed by SEM. The resistivity of BDD electrodes was studied using four-point probe measurements. The relative sp3/sp2 band ratios were determined by deconvolution of Raman and X-ray photoelectron spectra. The efficiency of degradation and mineralization of the reactive azo dye rubin F-2B was estimated based on the absorbance measurements at 545 nm. The influence of commonly used electrolytes NaCl and Na2SO4 on the dye removal efficiency was also investigated. The results suggest that, in general, the oxidation occurs indirectly at the anode through generation of hydroxyl radicals •OH, which react with the dye in a very fast and non-selective manner. In NaCl electrolyte the dye was also decomposed by more selective, active chlorine species (Cl2, HOCl). However the efficiency of this process in BDD depended on the electrode's doping level. Higher amounts of dopant on the surface of BDD resulted in the higher efficiency of dye removal in both electrolytes.  相似文献   

5.
《Fuel》2006,85(10-11):1509-1517
FT-IR/Raman spectroscopies have been used to identify the structural features of Victorian brown coal chars during the gasification in air at 400 °C. The deconvolution of the Raman spectra has allowed us to identify the main structural sites in char where preferential reaction with O2 takes place. The presence of Na and Ca catalysts is shown to alter the reaction pathways between char and O2. In the absence of a catalyst, the O-containing functional groups formed in char during gasification were closely associated with the aromatic structure and thus tended to loosen the aromatic structure. The non-catalysed gasification was slow and took place on some specific (especially sp3-rich or sp2–sp3 mixture) sites distributed throughout the char. In the presence of a catalyst (Na or Ca), the O-containing functional groups were not closely associated with the main aromatic structure throughout the char. The catalytic gasification reactions were localised on the sites associated with the catalysts. The preferential removal of smaller aromatic ring systems and the persistence of cross-linking structures in the presence of a catalyst mean that the large aromatic ring systems were increasingly concentrated with little flexibility, affecting the dispersion of catalyst.  相似文献   

6.
The generation of OH radicals on UV-illuminated TiO2 surface is mainly responsible for the photocatalytic oxidation of pollutants in various contaminated environmental media. Although the reactivity of OH radicals is largely limited within the surface region, the possibility of OH desorption and diffusion into the reaction medium has been often raised. This study provides several examples for the presence of diffusing OH radicals in aqueous solution and polymer matrix containing TiO2 particles. The photocatalytic degradation rates of (CH3)4N+ in TiO2 suspension were comparable between acidic and alkaline conditions, which could not be explained by a simple electrostatic surface charge model. From the present mechanistic study, it is suggested that the photocatalytic oxidation of (CH3)4N+ at acidic pH mainly proceeds through free OH radicals in the solution bulk, not on the surface of TiO2. The diffusing OH radicals also played the role of main oxidants in the solid phase. The photolysis of TiO2-embedded PVC composite films generated cavities around the imbedded TiO2 particles and the development of cavity diameter continued even after the direct contact between the PVC and TiO2 was prohibited. This implied that active oxygen species that were photogenerated on TiO2 surface desorbed and diffused across a few micrometers to react with the polymer matrix.  相似文献   

7.
The activation energies for alkene formation via dehydration of alcohols on bridge-bonded oxygen (BBO) vacancy sites of TiO2(110) is found to correlate with the inductive electron donating effect of alcohol alkyl groups as measured by the Taft parameter. Based on this correlation we conclude that the reaction involves a single transition state that undergoes concerted rupture of the C–O bond of the alkoxide and a C–H bond of the alkyl group attached to the β-carbon.  相似文献   

8.
In this study, structure and mechanical properties of doped diamond-like carbon (DLC) films with oxygen were investigated. A mixture of methane (CH4), argon (Ar) and oxygen (O2) was used as feeding gas, and the RF-PECVD technique was used as a deposition method. The thin films were characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by Stoney equation. The XPS and ERDA-RBS results indicated that by increasing the oxygen in the feeding gas up to 5.6 vol.%, the incorporation of oxygen into the films' structure was increased. The ratio of sp2 to sp3 sites was changed by the variation of oxygen content in the film structure. The sp2/sp3 ratios are 0.43 and 1.04 for un-doped and doped DLC films with 5.6 vol.% oxygen in the feeding gas, respectively. The Raman spectroscopy (RS) results showed that by increasing the oxygen content in doped DLC films, the amount of sp2 CC aromatic bonds was raised and the hydrogen content reduced in the structure. The attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirmed the decrease of hydrogen content and the increase the ratio of CC aromatic to olefinic bonds. Hardness and residual stress of the films were raised by increasing the oxygen content within the films' structure. The maximum hardness (19.6 GPa) and residual stress (0.29 GPa) were obtained for doped DLC films, which had the maximum content of oxygen in structure, while the minimum hardness (7.1 GPa) and residual stress (0.16 GPa) were obtained for un-doped DLC films. The increase of sp3 CC bonds between clusters and the decrease of the hydrogen content, with a simultaneous increase of oxygen in the films' structure is the reason for increase of hardness and residual stress.  相似文献   

9.
The advanced oxidation of high purity metoprolol tartrate, extracted from a commercial medicament, with TiO2 and UV light (365 nm) was investigated to determine the effect of initial reactant concentration on the reaction rate and the role of direct photolysis on the photocatalytic process. Analysis of the reaction samples by UV–Vis spectroscopy indicated that metoprolol tartrate is efficiently degraded by photocatalysis via hydroxylation of the aromatic ring. Kinetic studies indicated that the photocatalytic degradation of metoprolol tartrate follows a Langmuir, Hinshelwood, Hougen and Watson (LHHW) mechanism where the reaction order shifts from zero order to first order as the reactant concentration drops. Additional experiments showed that direct photolysis plays a minor role on the photocatalytic oxidation of metoprolol tartrate. Total organic carbon (TOC) studies demonstrated that metoprolol tartrate is transformed to other organic intermediate reaction products before complete mineralization to CO2. The fraction of reactant transformed into intermediate organic products was evaluated by a material balance using the results of analysis of the reaction samples by high performance liquid chromatography and TOC.  相似文献   

10.
The inhibitive effect of nitrogen-containing compounds on hydrodenitrogenation was studied over NiMo(P)/Al2O3 catalysts. From the differences in the adsorption constants it is concluded that at least four distinct catalytic sites are involved in the elementary hydrodenitrogenation steps. The catalytic site for the cleavage of aliphatic C(sp3)-N bonds is acidic and most probably an SH species on a surface Mo or Ni site. The catalytic site for the hydrogenation of a phenyl group is different from that for alkene hydrogenation, the former being more coordinately unsaturated than the latter, with two or three sulphur vacancies. A fourth site is responsible for the hydrogenolysis of the C(sp2)-N bond of anilines. It is characterised by a more reduced environment of Mo and by phosphorus promotion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The cross‐couplings of alcohols to alkenes with the palladium/Lewis acid system are reported. This reaction occurs in a successive alkene dimerization, direct C H activation of alcohol and sp3sp3 bond forming sequence via an interesting domino process.  相似文献   

12.
The application of experimental n.m.r. and chemical resolution enhancement techniques in cross-polarization/magic angle spinning (CP/MAS) 13C-n.m.r. spectroscopy yields spectra of coals and coalderived solids which contain structural information within the hybridization resonance envelopes. The sp2- and sp3-carbon resonance manifolds are partitioned into components arising from carbon centres bonded directly to oxygen, hydrogen and only other carbon atoms. The unique, observable chemical shift bands in the spectrum are increased from three (the relative areas of the sp2- and sp3-carbon resonance envelopes and a separate carbonyl band) to nine. This resolution permits the principal structural changes in chemically-modified coals to be mapped in unprecedented detail. The reductive alkylation of a typical bituminous coal has been examined by this method.  相似文献   

13.
Detonation nanodiamond (ND) particles were dispersed on silicon nitride (SiNx) coated sc-Si substrates by spin-coating technique. Their surface density was in the 1010–1011 cm?2 range. Thermal stability and surface modifications of ND particles were studied by combined use of X-ray Photoelectron Spectroscopy (XPS) and Field Emission Gun Scanning Electron Microscopy (FEG SEM). Different oxygen-containing functional groups could be identified by XPS and their evolution versus UHV annealing temperature (400–1085 °C) could be monitored in situ. The increase of annealing temperature led to a decrease of oxygen bound to carbon. In particular, functional groups where carbon was bound to oxygen via one σ bond (C–OH, C–O–C) started decomposing first. At 970 °C carbon–oxygen components decreased further. However, the sp2/sp3 carbon ratio did not increase, thus confirming that the graphitization of ND requires higher temperatures. XPS analyses also revealed that no interaction of ND particles with the silicon nitride substrate occurred at temperatures up to about 1000 °C. However, at 1050 °C silicon nitride coated substrates started showing patch-like damaged areas attributable to interaction of silicon nitride with the underlying substrate. Nevertheless ND particles were preserved in undamaged areas, with surface densities exceeding 1010 cm?2. These nanoparticles acted as sp3-carbon seeds in a subsequent 15 min Chemical Vapour Deposition run that allowed growing a 60–80 nm diamond film. Our previous study on Si(100) showed that detonation ND particles reacted with silicon between 800 and 900 °C and, as a consequence, no diamond film could be grown after Chemical Vapour Deposition (CVD). These findings demonstrated that the use of a thin silicon nitride buffer layer is preferable insofar as the growth of thin diamond films on silicon devices via nanoseeding is concerned.  相似文献   

14.
Nitrogen inclusion in both chemical vapour deposition and exfoliated few-layer graphene flakes was performed by nitrogen ion implantation in ultra-high vacuum. Inclusion of up to ∼20 at.% nitrogen can be reached through this clean technique with absence of oxygen species in the final product, while maintaining a largely sp2-carbon network. The nitrogen inclusion was observed by scanning X-ray photoelectron microscopy (SPEM) with energy resolution of 0.2 eV and spatial resolution of 10 nm. SPEM can be used to follow the evolution of nitrogen species: pyridinic, graphitic, and pyrrolic, at different doping stages and annealing temperatures. Variations in the ratio between sp2 nitrogen species was observed for increasing treatment time; annealing results in quenching of the sp3 component, suggesting the graphitic nitrogen as the most thermal stable species. The occurrence of graphitic species together with the absence of pyrrolic is indicative of N-incorporation into a hexagonal graphene-based lattice. Ion irradiation followed by annealing performed in a controlled way is a promising strategy to fine control the nature of the nitrogen species grafted to the graphene while focusing on selected applications.  相似文献   

15.
The ability of the vanadium phosphorus oxide (VPO) catalyst to selectively activate n-butane and then perform subsequent selective oxidation to maleic anhydride was investigated using electronic structure calculations. Both active site cluster models and periodic surface models, including explicit consideration of surface relaxation and hydration, led to the same qualitative conclusions about the reactivity of the (VO)2P2O7 (1 0 0) surface in substrate adsorption and oxidation. Density functional theory (DFT) reactivity indices and Density of States (DOS) plots show that, whether stoichiometric or phosphorus-enriched, strained or relaxed, bare or hydrated, covalent reactivity at the (1 0 0) surface is controlled by vanadium species, their dual acid–base attack giving selective activation of n-butane via methylene C–H bond cleavage. 1-butene is predicted to chemisorb at the surface using a π-cation complex, the strength of which makes 1-butene an unlikely intermediate in the production of maleic anhydride from n-butane. Coordinatively-unsaturated surface P–O and in-plane P–O–V oxygen species are the most nucleophilic surface oxygens, which may explain the surface-enrichment in phosphorus always seen in industrial catalysts for maleic anhydride synthesis and also recent in situ microscopy images of surface oxygen transfer to n-butane. The resistance of the maleic anhydride selective oxidation product to further transformation was shown to be dependent on its orientation in the active site, and simulation of surface hydration indicated that dissociative adsorption of water may serve to regenerate the catalyst, replenishing its supply of selective nucleophilic oxygen species for mild oxidation.  相似文献   

16.
Fanor Mondragon  Koji Ouchi 《Fuel》1984,63(7):973-977
Model compound studies were carried out to elucidate the reaction mechanisms taking place during the liquefaction of coal with the hydrogen produced from the reaction of zinc and water. In compounds of the type Ph-(CH2)n-Ph the splitting of the aliphatic bridge was easier with higher n values. Ether type compounds such as diphenylether were unreactive although the C-O bond in dibenzylether was easily cleaved. Condensed ring aromatic compounds gave low conversion with hydrogenation being facilitated by an increase in ring number. Phenolic compounds such as phenol did not react well, but the reactivity increased with increase in aromatic ring size. The cleavage of the aliphatic bridge was accelerated by the OH group, for example, in the case of 4-hydroxydiphenylmethane bond scission was about 15 times higher than that of diphenylmethane. Heterocyclic compounds were unreactive.  相似文献   

17.
The organic pollutants in water have been a great environment challenges to human beings, and photocatalytic degradation is an effective method to solve this problem. In this paper, the Rh-loaded cobalt ferrite CoFe2O4 (CFO) nanoparticles have been successfully synthesized by in situ photodeposition of Rh nanoparticles onto the porous CFO particles as the photocatalysts. After incorporating Rh nanoparticles, the CFO/Rh composite has a higher specific surface area and is more efficient in charge separation than the bare CFO. The photocatalytic efficiency of decomposing Malachite Green (MG) is improved from 70% over the bare CFO to 97% over the optimized CFO/Rh in 60 min. The CFO/Rh sample also demonstrates its durability for the degradation of MG in 5 photocatalytic reaction cycles. Additionally, hydroxyl radicals (?OH) and superoxide radicals (?O2?) are proved to be the crucial reactive species during the photocatalytic degradation of MG with CFO/Rh, evidenced by the active species capture experiments. This work provides a useful approach to enhance the photocatalytic activity of semiconductors for degrading organic dyes.  相似文献   

18.
Crystal and molecular structure of 2,6-diphenyl-4-carboxypyrylium and 5,6,7,8-tetrahydro-8-oxo-2,4-diphenyl-1-benzopyrylium perchlorates was solved. Analysis of our data and those retrieved form CSDB shows that for compounds with sp2 carbon atoms in C4-C41 bond exists very good relationships between lengths of this bond and bond angles at oxygen and at C4 atoms in the pyrylium ring. Good correlation exists too for two aromaticity indices and these bond lengths indicating mostly resonance effect of the substituent on the geometry of the pyrylium ring.  相似文献   

19.
阿特拉津作为一种高效廉价的除草剂被广泛应用于农业生产中,其结构稳定,难降解,已在水环境中大量检出,对生物及人体健康存在潜在威胁。与其他处理技术相比,光催化降解法对阿特拉津的降解起着重要作用。综述TiO_2光催化剂、经掺杂改性的TiO_2复合材料、金属离子及其复合物和金属氧化物对阿特拉津的光催化降解效率,并展望光催化材料的发展前景。高效的可见光光催化剂还有待开发,以增强对太阳光的吸收和利用,且应考虑将光催化降解法与其他处理技术相结合,开发既经济又高效去除阿特拉津的技术。综述阿特拉津的光催化降解机理,通过对降解过程中的中间产物鉴定,研究认为,阿特拉津三嗪环上的3个侧链经强氧化活性物种·OH进攻,发生烷基氧化、脱烷基化和脱氯羟基化等系列反应,最终被矿化为Cl~-、NO_3~-、CO_2和H_2O。  相似文献   

20.
With benzaldehyde as a model compound, the hydrogenation of aromatic aldehydes to aromatic hydrocarbons was investigated. Cu-HZSM-5 exhibited excellent catalytic performance for the reaction. The obtained catalysts were characterized by N2 adsorption/desorption, N2O chemisorptions, X-ray diffraction, NH3-temperature programmed desorption and X-ray photoelectron spectroscopy. It was found that Cu0 active species exhibited poor activity for the hydrogenation of benzene ring, while the strong acidity of HZSM-5 accelerated the hydrogenation reaction via hydrogen spillover phenomenon and the C–O activation effect. In addition, the catalyst was proved to be effective for the hydrogenation of a series of aromatic aldehydes to corresponding aromatic hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号