首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Bio-inspired and single site metal complex catalysts have been discussed to direct towards a rational design of solid heterogeneous catalysts. When concepts derived from catalytic antibodies, molecular imprinting and molecular recognition, and site isolation and modification by appropriate ligands are combined, with new techniques to prepare, tailor made solid materials, catalysts can be prepared that improve reaction rate and selectivity by increasing the concentration and activation of reactants in the vicinity of the active sites, and by stabilizing transition states or intermediate products. It is also shown that enzymatic, homogeneous and hetergeneous catalysts can be combined to perform “one-pot” cascade reactions.  相似文献   

4.
Homogeneous and heterogeneous catalysis have developed independently as two separate disciplines. Homogeneous catalysis is characterized by the use of highly active, well-characterized compounds. In contrast, heterogeneous catalysis exhibits the advantage of easy separation of the catalyst from the products and can be easily adapted to continuous flow processes. In recent years, there is an emerging trend in catalysis that is bridging these two fields. On one hand, some of the complexes used in homogeneous catalysis are really precursors of nanoparticles that are species that have been traditionally subject of study in heterogeneous catalysis. On the other hand, the use of novel media allows the recovery and reuse of homogeneous catalysts, a hallmark of heterogeneous catalysis. Also, powerful experimental techniques can characterize the active sites in solids up to a much higher level of detail. In this review, we have selected two reaction types that are attracting much current interest, namely the enantioselective addition to aldehydes by chiral metallosalen complexes and the palladium catalyzed C–C cross coupling, and used them to illustrate a series of strategies based on new concepts that can serve to impart the advantages of homogeneous catalysis into heterogeneous catalysis and vice versa.  相似文献   

5.
This mini-review contrasts the characteristics of traditional heterogeneous (solid) catalysts with those of homogeneous ones: the nature of the active sites in each case is very different, a fact well illustrated in ammonia synthesis. It is recalled that certain chemical transformations can be effected only with heterogeneous catalysts. It is also demonstrated that the scope for introducing multifunctional sites is greater with open-structured inorganic heterogeneous catalysts than with homogeneous ones: for example, TiIV ions distributed in a spatially isolated and accessible manner at the large areas of a nanoporous support smoothly convert cyclohexene to adipic acid (with H2O2) in a cascade of six consecutive reactions. A sharp distinction is drawn between nanocluster and nanoparticle “metal” catalysts, both electronic and geometric arguments being utilized to explain this difference. In the extreme case, a few (or single) metal atoms (supported on oxides) have been shown (see refs. Fu et al. Science 301:935, 2003 and Rim et al J Phys Chem C 113:10198, 2009) to be more important determinants of catalytic activity than nanoparticle metals such as Au and Pd. Recent advances in high-resolution electron microscopy is a key technique in this facet of catalysis. The merits of immobilizing single-site homogeneous catalysts and of creating atomically well-defined single-site heterogeneous ones on high-area solids are illustrated both from a practical viewpoint and also as a strategy for the design of new catalysts.  相似文献   

6.
During the autoxidation of cyclohexane, abstraction of the αH-atom of the hydroperoxide product by chain-carrying peroxyl radicals produces both the desired alcohol and ketone products, as well as the majority of by-products. Rationalizing the impact of this reaction, one should aim for a (catalytic) destruction of this hydroperoxide without the intervention of peroxyl chain-carriers. Starting from these new insights in the molecular mechanism, attempts for rational catalyst design are initiated.  相似文献   

7.
Over 40 years, there have been major efforts to aim at understanding the properties of surfaces, structure, composition, dynamics on the molecular level and at developing the surface science of heterogeneous and homogeneous catalysis. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1–10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mezoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation.  相似文献   

8.
High‐throughput screening offers major opportunities to accelerate the discovery and optimization of homogeneously catalyzed reactions. A general method for acquisition of reaction profiles through a high‐throughput quenching (HTQ) approach is described, which gives a more accurate picture of catalyst performance, e.g., total productivity, induction periods, selectivity and lifetime, than the customary analysis at a fixed, arbitrary time.  相似文献   

9.
An extensive screening of both homogeneous and heterogeneous catalysts was carried out for the enantioselective hydrogenation of p‐chlorophenylglyoxylic acid derivatives. For p‐chlorophenylglyoxylic amides only homogeneous Rh‐diphosphine complexes gave satisfactory results, ees up to 87% were observed for the cy‐oxo‐pronop ligand. For methyl p‐chlorophenylglyoxylate both a homogeneous as well as a heterogeneous catalyst performed with ees >90%. A Pt catalyst modified with cinchona derivatives achieved 93% ee for the (R)‐ and 87% ee for the (S)‐methyl p‐chloromandelate. A Ru‐MeObiphep catalyst also reached 93% ee with TONs up to 4000 and TOFs up to 210 h−1. For all catalytic systems the effects of the metal, the nature of the chiral auxiliary and the solvent as well as of the reaction conditions were investigated. The homogeneous process was scaled up to the kg scale and the enantiomeric purity of the product was enhanced to >99% ee by two recrystallizations of the free p‐chlorophenylmandelic acid.  相似文献   

10.
Surface functionalization of magnetic particles is an elegant way to bridge the gap between heterogeneous and homogeneous catalysis. The introduction of magnetic particles (MPs) in a variety of solid matrices allows the combination of well‐known procedures for catalyst heterogenization with techniques for magnetic separation. We have conveniently loaded sulfonic acid groups on magnetic particles supports in which chlorosulfonic acid is used as sulfonating agent. The main targets are room temperature, solvent‐free conditions, rapid (immediately) and easy immobilization technique, and low cost precursors for the preparation of highly active and stable MPs with high densities of functional groups. The inorganic, magnetic, solid acid catalyst was characterized via Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermal gravimetric analysis (TGA), X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometer (VSM) and titration. The catalyst is active for the Hantzsch reaction and the products are isolated in high to excellent yields (90–98%). Supporting this acid catalyst on magnetic particles offers a simple and non‐energy‐intensive method for recovery and reuse of the catalyst by applying an external magnet. Isolated catalysts were reused for new rounds of reactions without significant loss of their catalytic activity.  相似文献   

11.
Commercial edible vegetable oils in which part of their triglycerides are substituted with 1,3-diglycerides are healthier for human consumption than the original oils. This is because the human metabolism of 1,3-diglycerides is believed to occur through a distinct pathway with less probability of being deposited as fat in the body tissues. To obtain these enriched oils, conversion of triglycerides into diglycerides is carried out by glycerolysis using commercial crude glycerol containing dissolved alkali cations that homogeneously catalyze the reaction. The addition of a food production-compatible MgO as a supplementary solid basic catalyst, shortens the reaction time by half due to a combination of homogeneous and heterogeneous catalysis processes. In either homogeneously or homogeneous-heterogeneously catalyzed glycerolysis, the increase of the reaction temperature in the range of 453–493 K increases the final 1,3-diglyceride content. Furthermore, in both glycerolysis processes the triglyceride content can be decreased in more than 60% with the consequent increase of total diglycerides to 50%, 70% of which are the 1,3-isomers. The glycerolysis reaction proceeds without altering the fatty acid distribution of the original oils.  相似文献   

12.
13.
This article illustrates how bifunctional catalyst surfaces are created by modifying oxide surfaces with organic functional groups and/or with metal complexes, summarizing our previous reports and also presenting new data, which provide a new class of catalytic materials with a high complexity for selective catalysis including C–C coupling, hydroformylation, and asymmetric reactions. The catalyst surfaces are characterized by in situ physical analysis techniques such as time-resolved XAFS, FT-IR, solid-state MAS NMR and so on.  相似文献   

14.
《Catalysis Reviews》2013,55(2):175-256
Asymmetric heterogeneous catalysis is a vivid branch of catalysis, remaining, however, largely a domain of organic chemists. The view towards asymmetric heterogeneous catalysis adopted in this review is mainly from catalytic science and engineering. Not only reaction mechanisms, but also catalytic properties, kinetic regularities, as well as chemical engineering aspects, are covered with the main focus on recent developments.  相似文献   

15.
Asymmetric heterogeneous catalysis is a vivid branch of catalysis, remaining, however, largely a domain of organic chemists. The view towards asymmetric heterogeneous catalysis adopted in this review is mainly from catalytic science and engineering. Not only reaction mechanisms, but also catalytic properties, kinetic regularities, as well as chemical engineering aspects, are covered with the main focus on recent developments.  相似文献   

16.
The general outline of the theory of nuclear magnetic resonance (NMR) is now quite common knowledge. There are many excellent books and monographs which deal at length with the subject [1-3].  相似文献   

17.
The general outline of the theory of nuclear magnetic resonance (NMR) is now quite common knowledge. There are many excellent books and monographs which deal at length with the subject [1-3].  相似文献   

18.
Combined Homogeneous and Heterogeneous Crystal Nucleation in Glasses   总被引:1,自引:0,他引:1  
The temperature dependence of combined homogeneous and heterogeneous crystal nucleation is examined within the framework of the classical theory. It is demonstrated that nucleation can have a local maximum rate at one or two temperatures. The physical parameters which cause large changes in the structure of the nucleation curve are elucidated. Also, the influence of saturation effects on the structure of nucleation curves is illustrated. The utilization of these results for the interpretation of experiments and for the production of controlled crystal nucleation in glass is considered.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号