首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To tailor the characteristics of molecularly thin lubricant films, magnetic disk surfaces coated with nanometer-thick perfluoropolyether AM3001 lubricant films were irradiated with 184.9 and 253.7 nm ultraviolet (UV) rays. We elucidated the effect of UV irradiation on the interactions between the lubricant and the magnetic disk surface via surface energy, bonded lubricant thickness and lubricant spreading measurements for films with and without UV irradiation. We found that UV irradiation decreased the dispersive and polar surface energies of the lubricant films by 20 and 80%, respectively; increased bonded lubricant thickness; and decelerated lubricant spreading. These results indicated that dispersion and polar interactions between lubricant molecules and the magnetic disk surface were strengthened by UV irradiation.  相似文献   

2.
This article presents measurements of adhesion and friction of perfluoropolyether (PFPE) lubricant films dip-coated on magnetic disks covered with diamond-like carbon (DLC) film. We have developed a custom-built pin-on-disk type micro-tribotester to perform the tribological measurements. The adhesion tests were performed by pulling down/up a 1.5-mm-diameter glass ball on a stationary disk surface, and the friction tests were carried out by sliding the glass ball on a rotating disk surface without changing head-disk interface conditions from the adhesion tests. Experiments were performed for the different kinds of 2- and 6-nm-thick PFPE lubricants (polar: Zdol4000 and Zdol2000; nonpolar: Z03) under lightly loaded and slow sliding conditions to minimize disturbance against the molecular layered structure. The adhesive forces were found to decrease with increasing film thickness in the order of Z03 > Zdol2000 > Zdol4000 (decreasing rate), which closely corresponds to the order of monolayer thickness, and then to saturate to almost the same calculated values. As for the friction forces of 2-nm-thick films, Zdol2000 featured extraordinarily large friction in comparison with Zdol4000 and Z03, while Zdol4000 was slightly larger than Z03. The largest friction of Zdol2000 reveals that the 2-nm-thick Zdol2000 formed a monolayer that served as an immobile layer. With the increase in film thickness, the friction force of Zdol2000 decreased, indicating that extra lubricant molecules served as a mobile layer, while that of Z03 remained unchanged as the lowest value. By extrapolating the loading force versus friction force relationship into a negative loading force region, it is found that the friction force of Z03 tended to zero at zero net load (loading force plus adhesion force), while those for Zdol2000 and Zdol4000 exhibited finite values, indicating formation of an immobile layer, which shows similar characteristics to those of adhesive rubber material. The dewetted surface is found to feature violently changing friction force only at the first stage of sliding, and it then becomes stable after several sliding passes.  相似文献   

3.
Liu H  Bhushan B 《Ultramicroscopy》2003,97(1-4):321-340
Molecularly thick perfluoropolyether (PFPE) films are considered to be good protective films for micro/nanoelectromechanical systems (MEMS/NEMS) to reduce stiction, friction, and improve their durability. Understanding the nanotribological performance and mechanisms of these films are quite important for efficient lubrication for MEMS/NEMS devices. These devices are used in various operating environments and their effect on friction, adhesion and durability needs to be clarified. For this purpose, mobile and chemically bonded PFPE films were deposited by dip coating technique. The friction and adhesion properties of these films were characterized by atomic force microscopy (AFM). The effect of rest time, velocity, relative humidity, and temperature on nanotribological properties of these films was studied. Durability of these films was also measured by repeated cycling tests. The adhesion, friction mechanisms of PFPE at molecular scale, and the mechanisms of the effect of operating environment and durability are subject of this paper. This study found that adsorption of water, formation of meniscus and its change during sliding, viscosity, and surface chemistry properties play a big role on the friction, adhesion, and durability of the lubricant films.  相似文献   

4.
《Tribology International》2003,36(4-6):217-225
This paper presents wear and friction studies on ultra-thin (~2 nm) film of perfluoropolyether (PFPE) coated on glass substrate magnetic hard disks. The lubricant was coated on the disk by the dip-coating method and the tribological tests were carried out by sliding a 3 mm diameter glass ball slider (normal load=20 mN) on the rotating disk surface. Lube thickness and lube wear profile were measured using an ellipsometer whereas the worn disk surface was studied using a surface reflectivity analyzer. The sliding speed and the lube bonding conditions were varied during the test. From the results, it is concluded that about 80% bonding of the lube to the disk surface leads to an increase in the wear durability of the lubricant by a factor of 2 when compared to the as-lubed condition. Lube bonding has an effect on increasing the coefficient of friction. Initially, increasing sliding speed increases both friction and wear but for very high sliding speed these values tend to decrease. The glass ball surface showed wear due to asperity interactions as well as lube transfer from the disk to the glass surface.  相似文献   

5.
Functional perfluoropolyether (PFPE) films consisting of mobile and bonded molecules are widely used for lubrication of magnetic disks. In order to clarify the influence of film composition (mobile/bonded) on tribological performance, we measured the friction properties of two types of 2 nm-thick PFPE films (functional Zdol2000 and nonfunctional Z03) under lightly loaded (loading force: 0–1 mN) and quasi-static (low rotational speed: 2.1 mm/s) conditions as a function of elapsed time. The friction force of Z03 remained unchanged with time and increased linearly with loading force as described by Amontons’ law. In contrast, induced by the development of the molecules’ bonding in time, the friction force of Zdol2000 increased and transited to a nonlinear increase with loading force as time proceeded. The nonlinear friction-load relationship of Zdol2000 in the equilibrium state was characterized by the Johnson-Kendall-Roberts model.  相似文献   

6.
Choi  Junho  Kawaguchi  Masahiro  Kato  Takahisa 《Tribology Letters》2003,15(4):353-358
The best tribological properties can be obtained in a film that contains both bonded and mobile phases, and thus the ratio of the bonded phase to the mobile phase, the bonded ratio, is a critical factor for the lifetime of the mechanical components. In the present study, we deposited a mixed lubricant, which consists of a strongly bonded lubricant phase and a mobile lubricant phase, on a carbon overcoat. Islands of FDTS (perfluorodecyltrichlorosilane) SAM (self-assembled monolayer) were introduced as a strongly bonded lubricant phase and Fomblin Z03 lubricant as a mobile phase. The friction and durability properties of 2.5-in magnetic disks coated with 15 Å thick mixed lubricants were investigated using a ball-on-disk tribotester and compared with disks coated with 15 Å Zdol lubricants. Because the contact area of the ball increases with the bonded ratio, the friction coefficient of the disk coated with the mixed lubricant increases linearly with the bonded ratio over a range of about 25–100%. On the other hand, the friction coefficient of the disk coated with Zdol decreases with increasing bonded ratio. The mixed lubricant exhibits superior wear properties compared to Zdol. This may occur because the FDTS networks act as a barrier against the displacement of the mobile Z03 molecules, and the mobility of Z03 molecules is higher than that of Zdol molecules, which allows Z03 to replenish into the lubricant-depleted area at a higher rate.  相似文献   

7.
Lubrication with thin liquid films is essential to ensure the tribological reliability of technologically advanced devices, such as micro-electro-mechanical systems and hard disk drives. However, the adhesion and friction properties of thin films and the underlying mechanism remain elusive due to our limited understanding of film structures and motions at the molecular scale. Here, we investigate the adhesion behavior of nanometer-thick perfluoropolyether (PFPE) films confined between two solid surfaces as a function of film thickness using coarse-grained molecular dynamics simulations. Consistent with typical experimental results, our simulations show that the adhesive force exerted by the PFPE films reaches a maximum and then decreases with increasing solid–solid spacing. The maximum adhesive force increases sharply for PFPE films thinner than 4 nm. When exhibiting the maximum adhesive force, PFPE films are slightly stretched within a solid–solid spacing a little larger than the initial film thickness and thereby show lower density than the original equilibrium density. Conventional theories of adhesion, which assume equilibrium density for liquid films, are not applicable in such case. Therefore, we construct a theoretical model that takes decreasing liquid density into account to discuss the underlying mechanism of the adhesive force exerted by nanometer-thick PFPE films on solid surfaces. We infer from the theoretical analyses that the maximum adhesive force originates mainly from solid–liquid interaction for thin films and liquid–liquid interaction for thick films.  相似文献   

8.
Zhao  Zheming  Bhushan  Bharat  Kajdas  Czeslaw 《Tribology Letters》1999,6(2):141-148
This paper, with the concepts of hydrogen bonding interaction and tribo-emission, develops a new approach of the mechanism of perfluoropolyether (PFPE) lubricant degradation at the head–disk interface. The role of lubricant X-1P in tribological performance is also described. The mechanism is as follows: (1) at the interface, there exist hydrogen atoms with partial positive charge and oxygen atoms with partial negative charge; (2) hydrogen bonding interactions at the sliding interface result in high friction which depletes the lubricant film at some sites; (3) low energy electrons are emitted from the sites with solid–solid asperity contact, inducing C–O bond scission through the interaction of low-energy electrons with PFPE lubricant molecules. Carbon overcoat on Al2O3–TiC surface passivates the interaction between water and PFPE lubricant molecules. Hydrogen bonding interactions are minimized during the presence of lubricant X-1P. The new approach well explains experimental results in part I of the paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
To increase the recording density of hard disk drives (HDD), head and disk surfaces must be very flat. This will make the friction between them large when liquid bridges are formed. This is a result of Laplace pressure in the liquid bridge. Therefore, the study of Laplace pressure in real HDD interface is of an interest for head-disk interface engineers. However, Laplace pressure of perfluoropolyether (PFPE) lubricant on carbon coated thin-film disk surface was not clear until now.We measured Laplace pressure between transparent flat pins and carbon coated thin-film disks with laser texturing. Using laser textured disks, we could control the distance between two surfaces precisely by the bump height. The friction coefficient between the pin and the disk surfaces was determined when the interface was fully wet by liquids. It was 0.16 and 0.1 for water and a PFPE lubricant. The Laplace pressure was then calculated using the friction force and liquid wet area when the interface was partially wet by a liquid. The liquid wet area was measured by the observation of the contact point through the transparent pins.The results showed that the Laplace pressure at the lowest bump height (11 nm) was about 2.8 MPa for the PFPE lubricant. Results agreed well with calculated curves. We consider that PFPE acts as liquid down to 11 nm.  相似文献   

10.
The well-known problem of stiction in a magnetic disk drive largely depends on the forces induced by the presence of a thin liquid film. It is commonly recognized that both adhesive and viscous effects contribute to the magnitude of the stiction force, but is is not known what relative roles the two effects have in a lubricated contact. In the present work, the nature of adhesive and viscous effects is investigated for the slider/disk interface under conditions of constant-speed sliding.

Friction measurements are conducted over a range of sliding speeds, 0.25-250 mm/s, with eight perfluoropolyether (PFPE) lubricants applied in various thicknesses, 0-6.6 nm, to carbon-coated magnetic thin-film disks. The lubricants were selected to cover a broad range of viscosities. For several sliding speeds and lubricant film thicknesses, the friction force is found to decrease significantly with increasing sliding speed for all lubricants. In several instances, large friction forces are observed at the lowest sliding speeds, indicating stiction-like behavior, whereas, at higher speeds, the friction is reduced to even below unlubricated friction levels. At the highest film thickness and sliding speed, the friction was found to increase with speed for some lubricants. The implications of these results on current models of lubricant-mediated adhesion are discussed.  相似文献   

11.
Zhang  X.H.  Gates  R.S.  Anders  Simone  Hsu  S.M. 《Tribology Letters》2001,11(1):15-21
A high speed ball-on-inclined-plane test method has been developed to evaluate the lubrication effectiveness of Z-Dol on magnetic hard disks. The test evaluates the combined durability of the lubricant film and the carbon overcoat under sliding conditions. A polished ruby (Al2O3) ball without suspension is used to simulate the head material. The ball slides over an inclined (at an angle of 0.055°±0.005°) section of the disk surface at 2.0 m/s linear velocity. The load is controlled by the geometric interference of the preloaded ball and the inclined plane. The contact forces are sampled periodically at 2 rpm and the frictional coefficients calculated. Repeated sliding between the ball and the disk sample leads to an increase in friction approaching that of the unlubricated case. Post test analysis using atomic force microscopy (AFM) suggests that the increase in friction is due to the loss of lubricant effectiveness of the lubricant and the wear of the carbon overcoat. X-ray photoemission microscopy (PEEM) results suggest progressive oxidation of Z-Dol as one of the degradation mechanisms leading to wear. The durability of the lubricating thin films is defined by the number of cycles to failure. Test repeatability is about 10%, depending on lubricant, film thickness, and surface roughness. The test can be used to evaluate different lubricant chemistries as well as different carbon overcoats. Compared to other pin-on-disk tests and step loading ball-on-disk methods, this test introduces two additional factors: high speed impact and wear acceleration by the inclined angle. The high speed impact simulates potential thermal stresses associated with head–disk contact. With an inclined angle, the load increases evenly for each contact cycle, hence simulates the ability of the lubricant layer to react to dynamic loads. The test is intended as a basic research tool to measure the fundamental resistance of the lubricant layer to resist repeated high speed contacts.  相似文献   

12.
Particle contamination at the head–disk interface (HDI) is a major concern for the long-term reliability of hard disk drives. In the current study, it is shown that, surprisingly, soft and lubricious talc particles have a significant damaging effect on the friction performance of media lubricants, nanometer-thick perfluoropolyethers. Thermogravimetric analysis (TGA) and the adsorption studies indicate that two mechanisms, Lewis acid–catalyzed decomposition and surface adsorption, are responsible for the observed tribological degradation. The potential impacts of the findings here on the design of next-generation media lubricant have been discussed.  相似文献   

13.
Patterned lubricant films on magnetic hard disks offer potential advantages in controlled bonding sites, higher average shear strength, and longer durability. However, since the lubricant film thickness is at 1 or 2 nm, characterization of the pattern is difficult. Normal atomic force microscopic techniques can only image very small area in the nanometer range and the sharp tip can potentially modify the pattern. A wide area optical technique is needed to characterize the patterns. This paper examines patterned lubricant film using an optical surface analyzer (OSA) to image the bonded phase and mobile phase of an alcohol functionalized perfluoropolyether (PFPE) on magnetic hard disks. The phase shift signal and reflectivity intensity of the polarized light spectra provide clear optical images of the lubricant film at nanometer thickness. Optical images were successfully obtained before and after the buffing process and the ramp load and unload (L/UL) testing. Results of 100% bonded, 100% mobile, and 20% zigzag patterned lubricant films confirm that the patterned lubricant films can control the bonded/mobile ratio of such films better.  相似文献   

14.
The tribological characteristics of the head–disk interface are investigated during load–unload for air and helium-filled drives as a function of the pitch static angle and the roll static angle between slider and disk. A custom-made experimental tester inside a sealed environmental chamber was used to determine the regions of “safe” pitch static angle and “safe” roll static angle in air and helium environment during the load–unload process. The presence of head–disk contacts during load–unload were evaluated by measuring the acoustic emission signal and the decrease in rotational speed of the spindle. Scanning electron microscopy and optical surface analysis were used to investigate wear of the slider and the redistribution of lubricant on the disk surface after 10,000 load–unload cycles. The results indicate that the tribological performance of the head–disk interface is improved in helium environment compared to air environment.  相似文献   

15.
Waltman  R.J.  Kobayashi  N.  Shirai  K.  Khurshudov  A.  Deng  H. 《Tribology Letters》2004,16(1-2):151-162
We have investigated the tribological properties of a novel perfluoropolyether (PFPE) lubricant truncated on one end by a hydroxyl group and on the other end by a cyclotriphosphazene derivative. A measurement of the friction force as a function of molecular weight indicates that the dynamic clearance between the slider and the disk can be reduced by ~1.5 nm by decreasing the molecular weight from 5300 to 2400 g/mol. However, the thermodynamic film stability of the novel PFPE lubricants, as determined by surface energy measurements and ellipsometric imaging of lubricant dewetting, becomes increasingly unstable at lower film thicknesses with decreasing molecular weight. Measurements conducted on lubricant mobility indicate that the novel PFPE lubricants are relatively immobile compared to the Zdol perfluoropolyether lubricants and hence resist film thinning to a greater degree. These data provide the direction for the optimization of the molecular weight of these novel PFPE lubricants.  相似文献   

16.
Jiaa  Chi L.  Liu  Youmin 《Tribology Letters》1999,7(1):11-16
The retention characteristics of magnetic thin film media coated with perfluoropolyether (PFPE) lubricants and a phosphazene additive, X-1P, were investigated in this study. The retention performance was evaluated by a drag test with a waffle head sliding against the disk that was designed to mechanically wear out the lubricant layer. An IR beam was aligned on the test track to directly measure the amount of PFPE lubricants and X-1P left on the media surfaces for determining the retention characteristics of the lubricants. The drag test results show that under ambient and hot/wet conditions the media coated with AM3001 PFPE lubricant have higher retention ratio on the test track than those coated with ZDOL 2000 PFPE lubricant. The phosphazene additive X-1P was observed to strongly anchor on the surface and not easily removed as PFPE lubricants (ZDOL and AM3001). The retention characteristics of X-1P are independent of lube combination, either AM or ZDOL lubricants. It is demonstrated that X1-P exhibits a good antiwear property and excellent retention performance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Lubrication of Micro-Electro-Mechanical Systems (MEMS) is a major constraint in MEMS applications, restricting the designs and practical usages of such devices. Possible lubricants and methods have been investigated in this paper, comparing perfluoropolyether (PFPE) lubricant with multiply-alkylated cyclopentanes (MACs). The effectiveness of both the lubricants in reducing friction and enhancing the wear life was investigated in a new method of MEMS lubrication known as Localised-Lubrication or “Loc-Lub.” Friction and wear tests were conducted in a flat-on-flat test geometry under a normal load of 50 g and a sliding velocity of 5 mm s?1 in reciprocation, with Si as the substrate. Further tests were conducted at higher loads, to compare wear durability between lubricants and methods. It was found that MACs have a propensity to remain cohesive during the tests due to higher surface tension and provide better friction and wear properties when tested under reciprocating sliding conditions, as a complete film is present between the two surfaces. The results show that MAC lubricant is more effective in extending the wear life and reducing friction under the tested conditions compared to PFPE.  相似文献   

18.
Mitsuya  Y.  Goto  K.  Hayashi  Y. 《Tribology Letters》2004,16(1-2):43-50
An unstable phenomenon arising at the boundary between perfluoropolyether (PFPE) solution dipped and undipped zones over diamond like carbon (DLC) coated magnetic disks was studied. The formation conditions of a ridge of lubricant, or “sierra,” at this boundary and the structure of the “sierra” were clarified. It was found that the “sierra” structure of the lubricant suddenly formed when withdrawing the disk from the lubricant solution was decreased to less than a specified value of around 1 mm/s. The “sierra” was less likely to form for a lower lubricant concentration and a longer elapsed time after making the lubricant solution. It was also revealed that, along the ridgeline of the “sierra,” peaks formed periodically and the peak feet propagated in the direction perpendicular to the boundary, forming convex fronts and leaving multiplex bead chains of lubricant accumulations inside the convex.  相似文献   

19.
20.
In this study, the wear properties of a magnetic head slider on disks lubricated by ultra-thin perfluoropolyether (PFPE) lubricants with different molecular weights were evaluated by the continuous sliding of magnetic head sliders using the slider contact by the dynamic flying height control. Two types of PFPE lubricants (Z-tetraol and D-4OH) with different molecular weights were evaluated. Results show that the slider wear depended on the coverage of the lubricant film; i.e., the lubricant film with sufficient coverage reduced slider wear. The lubricant film with a low molecular weight (low-Mw), including a lubricant material with a Fomblin and Demnum main chain, exhibited better coverage on a diamond-like carbon surface. Sliders with a low-Mw lubricant film showed less wear than those of a high molecular weight (high-Mw), and the depletion of the low-Mw lubricant film was less than that of the high-Mw lubricant film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号