首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports a study of tempered martensite embrittlement in a low alloy steel. Even though this material would ordinarily be considered high purity (0.004 wt pct S and 0.004 wt pct P) the 40 wppm S are sufficient to cause the embrittlement. The results show that this embrittlement will only occur if sulfur is present on the grain boundaries in its elemental form. It it is precipitated along the grain boundaries as chromium sulfides, no embrittlement trough is observed. However, the fracture energy of all samples is reduced. This is because microvoid coalescence occurs at these grain boundary precipitates in the same manner as is observed in overheated steels.  相似文献   

2.
Metallurgical and mechanical properties of Ir-0.3 pct W alloys have been studied as a function of thorium concentration in the range 0 to 1000 ppm by weight. The solubility limit of thorium in Ir-0.3 pct W is below 30 ppm. Above this limit, the excess thorium reacts with iridium to form second-phase particles. Thorium additions raise the recrystallization temperature and effectively retard grain growth at high temperatures. Tensile tests at 650 °C show that the alloy without thorium additions (undoped alloy) fractured by grain-boundary (GB) separation, while the alloys doped with less than 500 ppm thorium failed mainly by transgranular fracture at 650 °C. Intergranular fracture in the doped alloys is supressed by GB segregation of thorium, which improves the mechanical properties of the boundary. The impact properties of the alloys were correlated with test temperature, grain size, and heat treatment. The impact ductility increases with test temperature and decreases with grain size. For a given grain size, particularly in the fine-grain size range, the thorium-doped alloys are much more ductile and resistant to GB fracture. All of these results can be correlated on the basis of stress concentration on GBs by using a dislocation pileup model.  相似文献   

3.
Room-temperature tensile and bend tests and Auger electron spectroscopy (AES) were used to study embrittlement in sheet steels coated with a 55 pct Al-Zn alloy and then heated in the range 316 to 538 °C for up to 5000 hours. The results of these studies show that embrittlement is caused by diffusion of Zn from the coating into the ferrite grain boundaries of the steel substrate, reducing intergranular cohesion. The activation energy for grain boundary diffusion of Zn in iron is estimated at 89 kJ/mole. When present in the steel in concentrations of at least 0.04 pct by weight, P is shown to prevent embrittlement by preemptively segregating to the ferrite grain boundaries where it blocks intergranular diffusion of Zn.  相似文献   

4.
The purpose of this work was to investigate the role of chromium on hydrogen embrittlement of Ni-Cr-Fe alloys and thus to develop a better understanding of the low-temperature stress corrosion cracking (SCC) phenomenon. The effect of chromium on hydrogen embrittlement was examined using tensile tests followed by material evaluation via scanning electron microscopy (SEM) and light optical microscopy. Four alloys were prepared with chromium contents ranging from 6 to 35 wt pct. In the uncharged condition, ductility, as measured by the percent elongation or reduction in area, increased as the alloy chromium content increased. Hydrogen appeared to have only minor effects on the mechanical properties of the low-chromium alloys. The addition of hydrogen had a marked effect on the ductility of the higher-chromium alloys. In the 26 pct chromium alloy, the elongation to failure was reduced from 53 to 14 pct, with a change in fracture mode from mixed ductile dimple and ductile intergranular failure to a brittle appearing intergranular failure. A maximum in embrittlement was observed in the 26 pct Cr alloy. The maximum in embrittlement coincided with the minimum in stacking-fault energy. It is proposed that the increased hydrogen embrittlement in the high-chromium alloys is due to increased slip planarity caused by the lower stacking-fault energy. Slip planarity did not appear to affect the fracture of the uncharged specimens.  相似文献   

5.
A study of the role of C and N in the brittle fracture of Fe-26 wt pct Cr has been under-taken on alloys containing combined C and N levels of 67 and 570 ppm. Mechanical and microstructural characterization has been performed on structures involving C and N in the states of solute, grain boundary precipitate, and intragranular precipitate (with emphasis on plate-like intragranular nitrides). Fracture mechanisms have been elucidated through microscopic evaluation of electropolished strips pulled in the ductile to brittle transition temperature (DBTT) range. DBTT variations larger than 200°C were observed. The alloys are embrittled by grain boundary carbonitrides and intragranular nitrides. Quenching to suppress precipitation was beneficial to the low C and N alloy but led to severe embrittlement at the higher C and N level. Roles of carbides, nitrides, and twins in microcrack formation were revealed. A relationship between precipitation annealing temperature, embrittlement mode, and DBTT was established.  相似文献   

6.
A series of Al-Li-Cu alloys with copper content of 0 to 6 wt pct and lithium content of 2.5 wt pct were studied. The results showed that copper plays an important role in grain refining, homogenization, and aging, and significantly influences the mechanical properties and fracture behaviors of the alloys. With the addition of copper, the hardness and peak-aging time increase, and the tensile strength gradually increases to a maximum value with copper content of about 3 wt pct and decreases after that. However, elongation decreases constantly, and the crack roots increase and lead to early crack. The mechanism of mechanical properties and fracture behaviors of Al-Li-Cu alloy is also discussed.  相似文献   

7.
High cycle fatigue tests in vacuum have been performed on ordered (Fe, Co, Ni)3V alloys between 25 °C and 850 °C. Heat-to-heat variations in fatigue properties of a Co-16.5 wtpct Fe-25 pct alloy, LRO-1, appeared to be due to differing quantities of grain boundary precipitates. Modification of this alloy with 0.4 pct Ti, to produce an alloy designated LRO-23, reduced the density of grain boundary precipitates and increased ductility, resulting in superior fatigue strength at high temperatures. The fatigue lives of LRO-1 and LRO-23 decreased rapidly above 650 °C, and increased intergranular failure was noted. The fatigue resistance of a cobalt-free alloy, Fe-29 pct Ni-22 pct V-0.4 pct Ti (LRO-37), was examined at 25 °C, 400 °C, and 600 °C; there was little evidence for intergranular fracture at any of these temperatures. Fatigue behavior of the LRO alloys is compared to that of conventional high temperature alloys.  相似文献   

8.
The role of chromium, carbon, chromium carbides, and phosphorus on the intergranular stress corrosion cracking (IGSCC) resistance of Ni-Cr-Fe alloys in 50 pct NaOH at 140 °C is studied using controlled-purity alloys. The effect of carbon is studied using heats in which the carbon level is varied between 0.002 and 0.063 wt pct while the Cr level is fixed at 16.8 wt pct. The effect of Cr is studied using alloys with Cr concentrations between 5 and 30 wt pct. The effect of grain boundary Cr and C together is studied by heat-treating the nominal alloy composition of Ni-16Cr-9Fe-0.035C, and the effect of P is studied using a high-purity, P-doped alloy and a carbon-containing, P-doped alloy. Constant extension rate tensile (CERT) results show that the crack depth increases with decreasing alloy Cr content and increasing alloy C content. Crack- ing severity also correlates inversely with thermal treatment time at 700 °C, during which the grain boundary Cr content rises and the grain boundary C content falls. Phosphorus is found to have a slightly beneficial effect on IG cracking susceptibility. Potentiodynamic polarization and potentiostatic current decay experiments confirm that Cr depletion or grain boundary C enhances the dissolution at the grain boundary. Results support a film rupture-anodic dissolution model in which Cr depletion or grain boundary C (independently or additively) enhances dissolution of nickel from the grain boundary region and leads to increased IG cracking.  相似文献   

9.
Fe-12 Mn alloys undergo failure by catastrophic intergranular fracture when tested at low temperature in the as-austenitized condition, a consideration which prevents their use for structural applications at cryogenic temperatures. The present research was undertaken to identify modifications in alloy composition or heat treatment which would suppress this embrittlement. Chemical and microstructural analyses were made on the prior austenite grain boundaries within the alloy in its embrittled state. These studies failed to reveal a chemical or microstructural source for the brittleness, suggesting that intergranular brittleness is inherent to the alloy in the as-austenitized condition. The addition of 0.002 to 0.01 wt pct boron successfully prevented intergranular fracture, leading to a spectacular improvement in the low temperature impact toughness of the alloy. Autoradiographic studies suggest that boron segregates to the austenite grain boundaries during annealing at temperatures near 1000 °C. The cryogenic toughness of a Fe-12Mn-0.002B alloy could be further improved by suitable tempering treatments. However, the alloy embrittled if inappropriate tempering temperatures were used. This temper embrittlement was concom-itant with the dissolution of boron from the prior austenite grain boundaries, which reestablishes the intergranular fracture mode.  相似文献   

10.
A nonequilibrium thermodynamic model which describes the effect of solute grain boundary segregation on grain boundary cohesion was extended to Fe ternary systems. The extended model directly and simply predicts the effect of alloying elements on impurity-induced grain boundary embrittlement. According to the extended model, Mo, W, and Zr strongly reduce, Ni, Ti, and V slightly reduce, and Cr and Mn enhance impurity-induced grain boundary embrittlement in an Fe ternary system. For the evaluation of the extended model, Fe-P, Fe-P-Mn, Fe-P-Mo, and Fe-P-W alloys were studied by Auger electron spectroscopy, scanning electron microscopy, 4-point slow bend tests, and tension tests. The experimental results show that for a given amount of P grain boundary segregation the grain boundary strength increases with increasing Mo or W grain boundary segregation and decreases with increasing Mn grain boundary segregation. These experimental results showing the remedial effect of Mo or W and the embrittling effect of Mn on P-induced grain boundary embrittlement are consistent with the predicted results from the extended model. The nonequilibrium model is also used to evaluate impurity-induced interfacial embrittlement in continuous fiber metal matrix composite materials.  相似文献   

11.
By applying a controlled amount of gallium (3 mg or 5 mg) to double-notched samples, the effects of the gallium on the grain boundary chemistry and tensile properties of AA6061-T4 alloy were investigated. Commercial-purity aluminum AA1050 was used for comparison to determine whether alloying elements would correlate with Ga-induced embrittlement and to elucidate the physical reason that governed the occurrence of intergranular fracture in the AA6061 Al-Mg-Si alloy. The AA6061 and AA1050 samples wetted by 3 mg or 5 mg of Ga were held statically for 7 days before tensile tests were conducted. The 6061 Al-Mg-Si samples with gallium were fractured intergranularly. However, the Ga-treated AA1050 samples had a mixed fracture mode, showing better strength and ductility than the Ga-treated AA6061 alloy, independent of whether the samples had their longitudinal axis parallel or perpendicular to the rolling direction, or the holding temperatures before tensile tests. Auger electron spectroscopy scanning the intergranular facets on fracture surfaces showed that the Auger peak-to-peak ratio IGa/IAl of 6061 samples was similar to that of 1050 samples, but the high intensity of Mg signal was detected from the intergranular fracture surface of the AA6061 alloy. Magnesium being induced by Ga to enrich on the grain boundary and free surface of the AA6061 alloy was confirmed. The intergranular embrittlement of the 6061 T4 Al-Mg-Si alloy wetted by small amount of Ga involves the combination of the following two effects: Ga metal on grain boundary embrittlement, and Ga-induced magnesium enrichment on grain boundary that further decreases the strength of the grain boundary.  相似文献   

12.
Grain boundary segregation in iron-sulfur-carbon alloys containing up to 100 wt ppm sulfur and up to 90 wt ppm carbon has been investigated with Auger electron spectroscopy (AES). The results show the site compctition on grain boundaries between the segregation of sulfur and carbon. The segregation energy of sulfur is estimated to be 75 kJ/mol. Impact tests of these alloys were carried out. Iron-sulfur alloys with less than 20 wt ppm carbon fractured by the intergranular mode with high ductile-brittle transition temperatures (DBTT’s). Addition of up to 90 wt ppm carbon to the binary alloys prevented the intergranular fracture caused by the grain boundary segregation of sulfur, and decreased the DBTT. Carbon, when segregated to grain boundaries, drives sulfur away from the boundaries and also increases the grain boundary cohesion. The DBTT values of the iron-sulfur-carbon alloys are analyzed in terms of the degree of grain boundary segregation of sulfur and carbon. It is shown that sulfur decreases the grain boundary cohesion of iron more severely than phosphorus if compared at the same degree of grain boundary segregation. Formerly Graduate Student  相似文献   

13.
Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.  相似文献   

14.
Although Al-Li-Cu alloys showed initial promise as lightweight structural materials, implementation into primary aerospace applications has been hindered due in part to their characteristic anisotropic mechanical and fracture behaviors. The Air Force recently developed two isotropic Al-Li-Cu-X alloys with 2.1 wt pct Li and 1.8 wt pct Li designated AF/C-489 and AF/C-458, respectively. The elongation at peak strength was less than the required 5 pct for the 2.1 wt pct Li variant but greater than 10 pct for the 1.8 wt pct Li alloy. The objectives of our investigations were to first identify the mechanisms for the large difference in ductility between the AF/C-489 and AF/C-458 alloys and then to develop an aging schedule to optimize the microstructure for high ductility and strength levels. Duplex and triple aging practices were designed to minimize grain boundary precipitation while encouraging matrix precipitation of the T1 (Al2CuLi) strengthening phase. Certain duplex aged conditions for the AF/C-489 alloy showed significant increases in ductility by as much as 85 pct with a small decrease of only 6.5 and 2.5 pct in yield and ultimate tensile strength, respectively. However, no significant variations were found through either duplex or triple aging practices for the AF/C-458 alloys, thus, indicating a very large processing window. Grain size and δ′ (Al3Li) volume fraction were determined to be the major cause for the differences in the mechanical properties of the two alloys.  相似文献   

15.
Iron alloys containing 20 and 30 pct Ni and 3 to 4 cu cm H per 100 g metal have been subjected to slow strain-rate tensile tests in a study of hydrogen embrittlement. In the lower nickel massive martensite alloy, embrittlement is manifest as the cracking of prior austenite grain boundaries and is severe at room temperature but less marked at -196°C; while in the higher nickel acicular martensite alloy, the embrittlement observed at 20°C does not occur at —196°C. Hydrogen embrittlement in these materials is believed to be the result of high hydrogen contents in the vicinity of the prior austenite grain boundaries combined with stress concentrations caused by boundary perturbations which result from the impact of the martensite shears. During deformation, microcracks form and propagate in the prior austenite grain boundaries, probably assisted by internal hydrogen pressure and the lowering of crack surface energy by hydrogen adsorption. The temperature dependence and the effect of the type of martensite on the embrittlement can be explained by their effects on the hydrogen content and stress concentrations at prior austenite grain boundaries during deformation.  相似文献   

16.
In the “as rolled” condition an Fe-6 Ni-5 Mn maraging type alloy was found to be brittle exhibiting intergranular fractures. The addition of 2.5 pct Mo and 5.0 pct Mo increased the impact toughness of the “as rolled” material and changed the mode of brittle fracture to transgranular cleavage. The addition of 9 pct Co embrittled the alloy. On aging Mo and Co raised the peak hardness of the base Fe-6 Ni-5 Mn alloy, however, aging led to rapid embrittlement. The base alloy and an alloy containing 2.5 pct Mo showed brittle intergranular fractures on aging. The addition of 5 pct Mo gave rise to brittle transgranular cleavage fractures on aging at 450°C, but at temperatures less than 450°C there was always up to 20 pct intergranular fracture present in brittle fractures. At temperatures greater than 475°C brittle intergranular failure occurred in the 5 pct Mo alloy due to a grain boundary film of M6C and Fe2Mo. This paper is based upon a thesis submitted by D. R. Squires in partial fulfilment for a higher degree of CNAA at Sheffield Polytechnic.  相似文献   

17.
The corrosion fatigue behavior of an Al-2.5 pct Li-0.12 pct Zr alloy has been studied as a function of heat treatment by performing smooth specimen fatigue life experiments on differently aged alloys in dry air and humid nitrogen. Results indicated that aging decreased the fatigue life of the Al-Li-Zr alloy in dry air. However, exposure to water vapor reduced the fatigue resistance of the underaged (UA) alloys but increased the fatigue life of the overaged alloys (OA) alloys. Hydrogen precharging experiments (either exposure to moist air or cathodic charging in HC1 solutions) followed by fatigue testing in dry air confirmed that the UA alloys were susceptible to hydrogen embrittlement and that the OA alloys were insensitive to a hydrogen effect. The experimental results suggest that the susceptibility of the Al-Li-Zr alloy to hydrogen-assisted fracture is essentially related to the effectiveness of hydrogen transport to the region ahead of the crack tip, which is controlled by the microstructure of the alloy. Environmental and aging effects which influence the fatigue characteristics of the studied alloy are discussed.  相似文献   

18.
An investigation was conducted to determine the effect on tensile behavior of Ta, W, V, Nb, and a Ta-2.5 wt pct W alloy when they were exposed to liquid U. Tantalum, wolfram, and the Ta-2.5 wt pct W alloy were embrittled with a negligible reduction of cross section at failure, whereas V and Nb showed ductile behavior, with the samples necking down to a point. Tensile deformation of Ta in liquid U was also investigated at different displacement rates. It was found that ductility and strength increased with increasing displacement rate. The embrittlement in Ta, W, and the Ta-2.5 wt pct W alloy was associated with intergranular penetration of U, and the fracture surfaces showed evidence of grain boundary dissolution. At higher displacement rates, however, this evidence was less obvious. These results indicate that intergranular penetration of liquid U and tensile embrittlement in some of the Group VB and VIB metals correlate with low mutual solubility between the solid and liquid elements. It was also found that the thermo-dynamic criterion for intergranular penetration of liquid into a solid (grain boundary energy > 2 × liquid/solid interfacial energy) only applies to these systems.  相似文献   

19.
High-temperature tensile impact testing was carried out on Ir + 0.3 wt pct W alloys doped with cerium and thorium individually, and with cerium and thorium together. Impact ductility was evaluated as a function of grain size and test temperature. Cerium by itself was not as effective as thorium in improving the grain boundary cohesion, even though it segregated more strongly than thorium to the grain boundaries. This lower grain boundary cohesion was responsible for lower impact ductility and higher brittle-to-ductile transition temperature of cerium-doped alloys compared to those of the thorium- or thorium plus cerium-doped alloys. Reduction in thorium content by a factor of 5 (from 50 to 10 appm) in the bulk did not result in any significant reduction in hightemperature impact ductility or an increase in the brittle-to-ductile transition temperature as long as sufficient cerium was added to provide grain refinement. Grain boundary strengths of thorium- and thorium plus cerium-doped alloys were almost identical.  相似文献   

20.
The mechanical and fracture properties of austenitic stainless steels (SSs) alloyed with gallium require assessment in order to determine the likelihood of premature storage-container failure following Ga uptake. AISI 304 L SS was cast with 1, 3, 6, 9, and 12 wt pct Ga. Increased Ga concentration promoted duplex microstructure formation with the ferritic phase having a nearly identical composition to the austenitic phase. Room-temperature tests indicated that small additions of Ga (less than 3 wt pct) were beneficial to the mechanical behavior of 304 L SS but that 12 wt pct Ga resulted in a 95 pct loss in ductility. Small additions of Ga are beneficial to the cracking resistance of stainless steel. Elastic-plastic fracture mechanics analysis indicated that 3 wt pct Ga alloys showed the greatest resistance to crack initiation and propagation as measured by fatigue crack growth rate, fracture toughness, and tearing modulus. The 12 wt pct Ga alloys were least resistant to crack initiation and propagation and these alloys primarily failed by transgranular cleavage. It is hypothesized that Ga metal embrittlement is partially responsible for increased embrittlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号