共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
金属氧化物气敏传感器是金属氧化物与被测气体发生作用后, 改变了它的电性质, 从
而把气体成份、浓度等化学信息转换成电的信息的一种元器件金属氧化物的电性质与材
料的点缺陷有密切的关系, 因而研究点缺陷理论对了解金属氧化物气敏传感器的作用原
理, 改善其气敏性能都是很必要的 相似文献
3.
金属氧化物气敏传感器 总被引:3,自引:0,他引:3
6结论与展望 6.1气敏传感器近年来的研究开发成果 以二氧化锡可燃性气体传感器为代表的金属氧化物半导体气敏传感器和以二氧化锆浓差电池氧气传感器为代表的金属氧化物固体电解质气敏传感器实用化以来的短短几十年,金属氧化物气敏传感器事业得到很大的发展,特别是近20年来,它引起了世界主要国 相似文献
4.
5.
超微粒氧化铁的制备与气敏性能的研究 总被引:1,自引:0,他引:1
本文采用PCVD法制备了纳米级的超微粒氧化铁气敏材料.用这种材料制备的气敏元件具有工作温度低、灵敏度高、响应速度快、稳定性好等优点.不需掺杂,改变工作温度和热处理温度便可获得对酒精蒸汽和C_2H_2气体具有选择性的气敏元件.这种材料像SnO_2,ZnO气敏材料一样,在205℃左右出现电导极值.超微粒α-Fe_2O_3的气敏机制属表面控制型. 相似文献
6.
7.
8.
9.
氧化铁薄膜的PCVP过程
及其气敏性能初探 总被引:1,自引:0,他引:1
由于α-Fe_2O_3具有较高的化学稳定性,一般认为它无气敏效应,后来才发现微细化、低结晶化及薄膜化的α-Fe_2O_3具有显著的气敏性,因此其气敏效应的发现晚于γ-Fe_2O_3。现已有了实用化的α-Fe_2O_3气敏元件,因而研究微细化的α-Fe_0O_3薄膜气敏村料成为必要,这对于材料的稳定生长和质量控制以及薄膜生长的微机控制都具有现实的意义,而研究氧化铁气敏薄膜的成膜工艺及动力学目前还未见详细报道。 实验是在一个真空反应管内进行的,衬底用电炉加热,温度由水银计显示,用10.5MHz高频电场等离子体激发源,以二茂铁为源材,以氧气为氧化剂兼作载气。氧 相似文献
10.
11.
12.
过渡金属氧化物薄膜是重要的离子敏变色材料,也是光开关功能方面的灵巧(smart)材料.由它构成的电—光器件具有广阔的应用前景,其工作原理属固态离子学,或微离子学.过渡金属氧化物薄膜是宽能带间隙半导体,在可见光波段完全透明.当它在含水电介 相似文献
13.
14.
15.
16.
17.
用共沉淀法制备了镍镧复合氧化物并对其进行三价、四价离子系列掺杂。研究了掺杂物的气敏性能。实验结果表明,SiO2,TiO2,SnO2,Al2O3,SbCl3等掺杂的复合氧化物,均对乙醇有较高的气敏性,而对汽油、H2及LPG等气敏性较低。其中TiO2掺杂量为4%(摩尔分数)的镍镧复合氧化物对乙醇的气敏性能最好。探讨了Si,Ti,Sn,Al,Sb等离子的价态,离子半径及复合氧化物的形成条件等与气敏性能的关系,研究了工作温度,被测气体浓度对元件气敏性能及对气体选择性的影响。 相似文献
18.
Zn2+掺杂WO3基气敏材料的制备及气敏性能研究 总被引:3,自引:0,他引:3
通过加热分解钨酸制备的WO3与Zn(NO3)2溶液超声分散,制备出了掺杂Zn2 的WO3基气敏材料。研究了Zn2 掺杂对WO3气敏材料性能的影响。结果发现,Zn2 掺杂WO3基传感器对H2S有较好的气敏性能,在常温下对极低浓度(5×10-6)H2S也有很高的灵敏度(56),适量掺杂可以提高其灵敏度,Zn2 掺杂n_Zn~(2 )/n_W=2%的WO3基传感器的灵敏度最大,对50×10-6H2S在200℃灵敏度可达1800。通过X-射线衍射仪(XRD),比表面测定仪(BET)对材料进行了表征,比表面积范围介于2.5~3.5m2/g之间。结合有关理论,对元件气敏现象及机理进行了解释。 相似文献
19.
采用水浴加热法合成CuO微米颗粒,并用Au、Ag和Cr元素进行掺杂。通过扫描电镜和X射线衍射仪对产物的形貌及组成进行表征,并将合成的粉体制成敏感膜,采用静态配气法对产物气敏性能进行研究。实验结果表明:制备合成的CuO颗粒呈微米片聚合成的橄榄或捧花状,尺寸范围在2μm~3μm;所有样品的XRD图谱与标准卡片一致;微米CuO的气敏性能随着测试温度的降低而提高。气敏测试表明:掺杂1.25 wt%Au的CuO对10×10-6的H_2S气敏性能最好,最佳工作温度降低至40℃,响应值达到128,具有良好的选择性;此外,该传感器的最低检测下限达到100×10-9,具有较好的重复性和长期稳定性,有望制备出低功耗H_2S气体传感器。 相似文献
20.
金属氧化物半导体SnO2气敏传感器 总被引:2,自引:0,他引:2
SnO_2具有金红石型的晶体结构,禁带宽度约为 3.6 eV.由于Sn的电子亲合力不太强,晶态SnO_2都具有氧空位,故属于N型金属氧化物半导体.作为施主的氧空位,其能 相似文献