首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
1. We have demonstrated recently that exogenous prostaglandin E2 (PGE2) inhibits electrical field stimulation (EFS)-induced acetylcholine (ACh) release from parasympathetic nerve terminals innervating guinea-pig trachea. In the present study, we have attempted to characterize the pre-junctional prostanoid receptor(s) responsible for the inhibitory action of PGE2 and to assess whether other prostanoids modulate, at a prejunctional level, cholinergic neurotransmission in guinea-pig trachea. To this end, we have investigated the effect of a range of both natural and synthetic prostanoid agonists and antagonists on EFS-evoked [3H]-ACh release. 2. In epithelium-denuded tracheal strips pretreated with indomethacin (10 microM), PGE2 (0.1 nM-1 microM) inhibited EFS-evoked [3H]-ACh release in a concentration-dependent manner with an EC50 and maximal effect of 7.62 nM and 74% inhibition, respectively. Cicaprost, an IP-receptor agonist, PGF2alpha and the stable thromboxane mimetic, U46619 (each at 1 microM), also inhibited [3H]-ACh release by 48%, 41% and 35%, respectively. PGD2 (1 microM) had no significant effect on [3H]-ACh release. 3. The selective TP-receptor antagonist, ICI 192,605 (0.1 microM), completely reversed the inhibition of cholinergic neurotransmission induced by U-46619, but had no significant effect on similar responses effected by PGE2 and PGF2alpha. 4. A number of EP-receptor agonists mimicked the ability of PGE2 to inhibit [3H]-ACh release with a rank order of potency: GR63799X (EP3-selective) > PGE2 > M&B 28,767 (EP3 selective) > 17-phenyl-omega-trinor PGE2 (EP1-selective). The EP2-selective agonist, AH 13205 (1 microM), did not affect EFS-induced [3H]-ACh release. 5. AH6809 (10 microM), at a concentration 10 to 100 times greater than its pA2 at DP-, EP1- and EP2-receptors, failed to reverse the inhibitory effect of PGE2 or 17-phenyl-omega-trinor PGE2 on [3H]-ACh release. 6. These results suggest that PGE2 inhibits [3H]-ACh release from parasympathetic nerves supplying guinea-pig trachea via an interaction with prejunctional prostanoid receptors of the EP3-receptor subtype. Evidence for inhibitory prejunctional TP- and, possibly, IP-receptors was also obtained although these receptors may play only a minor role in suppressing [3H]-ACh release when compared to receptors of the EP3-subtype. However, the relative importance of the different receptors will depend not only on the sensitivity of guinea-pig trachea to prostanoids but on the nature of the endogenous ligands released locally that have activity on parasympathetic nerves.  相似文献   

2.
Mode and site of release of ATP evoked by isoprenaline were evaluated in the electrically driven left atrial segment of guinea pig. The peak release of ATP 5 min after 1 microM isoprenaline was inhibited by 1 microM propranolol and 1 microM butoxamine, but not by 1 microM atenolol, showing that the ATP release is due to stimulation of the presynaptic beta 2-adrenoceptor by isoprenaline. The maximum ATP release was markedly reduced by Ca2+/calmodulin antagonists, W-7 and trifluoperazine, and by a mitotic inhibitor, vinblastine. Further, the release was similarly inhibited by myosin light chain kinase inhibitors, ML-7 and wortmannin. Nifedipine, a Ca(2+)-channel blocker, decreased the release of ATP evoked by isoprenaline. By contrast, Bay K 8644, a Ca(2+)-channel opener, tended to enhance the ATP release. These findings suggest that isoprenaline produces ATP release from adrenergic nerve terminals of atrium, implying that ATP serves as a co-transmitter.  相似文献   

3.
The coupling of the endogenously expressed alpha2A-adrenoceptors in human erythroleukemia cells (HEL 92.1.7) to Ca2+ mobilization and inhibition of forskolin-stimulated cAMP production was investigated. The two enantiomers of medetomidine [(+/-)-[4-(1-[2, 3-dimethylphenyl]ethyl)-1H-imidazole]HCl] produced opposite responses. Dexmedetomidine behaved as an agonist in both assays (i.e. , it caused Ca2+ mobilization and depressed forskolin-stimulated cAMP production). Levomedetomidine, which is a weak agonist in some test systems, reduced intracellular Ca2+ levels and further increased forskolin-stimulated cAMP production and therefore can be classified as an inverse agonist. A neutral ligand, MPV-2088, antagonized responses to both ligands. Several other, chemically diverse alpha2-adrenergic ligands also were tested. Ligands that could promote increases in Ca2+ levels and inhibition of cAMP production could be classified as full or partial agonists. Their effects could be blocked by the alpha2-adrenoceptor antagonist rauwolscine and by pertussis toxin treatment. Some typical antagonists such as rauwolscine, idazoxan, and atipamezole had inverse agonist activity like levomedetomidine. The results suggest that the alpha2A-adrenoceptors in HEL 92.1.7 cells exist in a precoupled state with pertussis toxin-sensitive G proteins, resulting in a constitutive mobilization of intracellular Ca2+ and inhibition of cAMP production in the absence of agonist. This constitutive activity can be antagonized by inverse agonists such as levomedetomidine and rauwolscine. Levomedetomidine can be termed a "protean agonist" because it is capable of activating uncoupled alpha2-adrenoceptors in other systems and inhibiting the constitutive activity of precoupled alpha2-adrenoceptors in HEL 92.1. 7 cells. With this class of compounds, the inherent receptor "tone" could be adjusted, which should provide a new therapeutic principle in receptor dysfunction.  相似文献   

4.
Cross-sections of the vas deferens taken from control adult male rats showed positive histochemical reactivity to acetylcholinesterase and immunoreactivity for antibodies to protein gene product 9.5, tyrosine hydroxylase, neuropeptide Y, vasoactive intestinal polypeptide, nitric oxide synthase and calcitonin gene-related peptide. Immunoreactivity to substance P was very sparse. Histochemical reactivity to acetylcholinesterase and immunoreactivity to vasoactive intestinal polypeptide and nitric oxide synthase was concentrated in the subepithelial lamina propria and inner smooth muscle layers. Complete surgical denervation resulting from transection of the nerve arising from the pelvic ganglion which supplies the vas deferens totally abolished the immunoreactivity to all of the antibodies tested as well as the histochemical reactivity to acetylcholinesterase. In sections of the prostatic end of the vas deferens taken from rats neonatally pretreated with capsaicin, immunoreactivity to calcitonin gene-related peptide and substance P was reduced by 75 and 83%, respectively. Immunoreactivity to neuropeptide Y, vasoactive intestinal polypeptide and nitric oxide synthase was similar in tissue sections taken from capsaicin-treated rats and those taken from control tissues. Pretreatment of rats with guanethidine or 6-hydroxydopamine decreased immunoreactivity to tyrosine hydroxylase and neuropeptide Y by 60-70%, but immunoreactivity to substance P, vasoactive intestinal polypeptide and nitric oxide synthase was unchanged, while immunoreactivity to calcitonin gene-related peptide and acetylcholinesterase staining was increased by guanethidine but not by 6-hydroxydopamine treatment. Triple labelling experiments showed nitric oxide synthase, vasoactive intestinal polypeptide and acetylcholinesterase all to be co-localized in some nerve fibres. These results indicate that the nitric oxide synthase contained in the nerve fibres innervating the rat vas deferens is unaffected by pretreatment of rats with capsaicin, 6-hydroxydopamine or guanethidine but is abolished by surgical denervation, of postganglionic parasympathetic, sympathetic and sensory nerves. Therefore it appears that nitric oxide synthase is co-localized with vasoactive intestinal polypeptide in the postganglionic parasympathetic nerves which innervate the rat vas deferens.  相似文献   

5.
Effects of various gastrointestinal peptides on gastric somatostatin release from the isolated perfused rat stomach were studied. After isolation of the stomach in a fasted rat by the method of Lefébvre and preperfusion with 4.6% dextran-Krebs-Ringer bicarbonate buffer containing 5.5 mM glucose, each peptide was infused into the left gastric artery at a constant rate for 15 min. Secretin and bombesin caused a significant increase of gastric somatostatin release in a dose-related manner (10(-8)-10(-6) M). Gastric somatostatin release was also stimulated after the administration of pentagastrin (10(-8)-10(-6) M). In contrast, both methionine-enkephalin and substance P decreased gastric somatostatin release in a dose-related manner (10(-8)-10(-6) M), whereas neurotensin (10(-8)-10(-6) M) failed to change it significantly. The present results suggest that these various gastrointestinal peptides may regulate gastric somatostatin secretion.  相似文献   

6.
1. The effect of octopamine on the release of endogenous acetylcholine (ACh) from isolated ileal synaptosomal preparations of guinea-pigs was examined using high pressure liquid chromatography with electrochemical detection. Release of ACh was induced by substance P or by depolarization with high potassium (50 mmol/L) in medium containing atropine, propranolol and naloxone. 2. Octopamine produced a dose-dependent inhibition of substance P-induced ACh release. A similar inhibitory action of octopamine was found in the samples depolarized by high potassium as a reference. 3. The action of octopamine was not reversed by the dopamine receptor antagonists either for the DA-2 subtype, domperidone, or for the DA-1 subtype, SCH23390, or by haloperidol. However, idazoxan and yohimbine antagonized this octopamine-induced inhibition at concentrations sufficient to abolish the action of clonidine. 4. Failure of guanethidine or nomifensine to inhibit octopamine ruled out mediation by noradrenergic neurotransmitters. 5. Octopamine decreased the influx of [45Ca] stimulated by substance P into synaptosomal preparations and this was reversed by idazoxan or yohimbine at concentrations sufficient to block the action of clonidine. 6. Pertussis toxin abolished the inhibitory action of octopamine at a dose high enough to block the action of clonidine. 7. These results indicate that octopamine suppresses the influx of calcium ions into cholinergic nerve terminals of ileal synaptosomes of guinea-pigs via an activation of alpha 2-adrenoceptors coupled with a pertussis toxin-sensitive GTP-binding protein which results in a decrease of ACh release.  相似文献   

7.
1. The effects of prejunctional beta-adrenoceptor activation on electrically evoked noradrenaline (NA) and adenosine 5'-triphosphate (ATP) were studied by use of continuous amperometry and conventional intracellular recording techniques. Excitatory junction potentials (e.j.ps) were used as a measure of ATP release, and NA-induced slow depolarizations and oxidation currents as measures of NA release, from postganglionic sympathetic nerves innervating the rat tail artery in vitro. 2. Isoprenaline (0.1 microM) increased the amplitude of e.j.ps, slow depolarizations and oxidation currents evoked by short trains of stimuli at 1 to 4 Hz. The facilitatory effect of isoprenaline on e.j.ps and oxidation currents was most pronounced on responses evoked by the first stimulus in a train. 3. Isoprenaline (0.1 microM) did not detectably alter the amplitude-frequency distribution of spontaneous e.j.ps. 4. The facilitatory effect of isoprenaline on e.j.ps, slow depolarizations and oxidation currents was abolished by the beta-adrenoceptor antagonist, propranolol (0.1 microM). Propranolol alone had no effect on e.j.ps, slow depolarizations or oxidation currents. 5. Thus, activation of prejunctional beta-adrenoceptors increases the release of both NA and ATP from postganglionic sympathetic nerves. The findings are consistent with the hypothesis that NA and ATP are released from the same population of nerve terminals and presumably from the same vesicles.  相似文献   

8.
In contrast to other muscarinic agonists, WAL 2014 FU does not induce bronchospasm in laboratory animals. The present investigation was intended to test the hypothesis that this is due to a particular susceptibility of the drug's effect to antagonism by catecholamines, as a result of partial M3-agonism. The tonic activity of the muscarinic agonists, aceclidine, arecoline, carbachol, McN-A-343, RS 86, thiopilocarpine and WAL 2014 FU, was tested in groups of isolated tracheal muscle of the guinea-pig. Susceptibility to functional antagonism by beta-adrenoceptor stimulation was measured by the displacement of the concentration-force curves by 3 microM noradrenaline. Evaluation of the concentration-force relationship revealed differences in potency and intrinsic activity (carbachol-100%) ranging from 114% for arecoline to 36% for thiopilocarpine (WAL 2014 FU-63%). The catecholamine increased the concentration of agonist which induced 5% of the maximum effect achievable (EC05) values fivefold (carbachol) to more than 4,680 fold (thiopilocarpine) (WAL 2014 FU: 2,860 fold). Regression analysis between the intrinsic activity of the seven compounds and the antagonistic effect of noradrenaline revealed a significant correlation (Spearman correlation coefficient (r[s])=-0.79; p=0.036). Inhibition of the effects of endogenous catecholamines by beta-adrenolysis with 50 microM toliprolol increased the maximal contraction induced by 1 mM WAL 2014 FU, but did not affect maximal contraction induced by 30 microM arecoline. Pretreatment with 0.3-1.0 mM dibutyrylcyclic adenosine monophosphate (DBcAMP) shifted the concentration-response curves of arecoline, WAL 2014 FU and thiopilocarpine in a similar manner to noradrenaline. The results exclude an important contribution of adenylate cyclase-coupled M2-receptors to the susceptibility of tracheal contraction by muscarinic agonists to functional antagonism by noradrenaline, but emphasize the importance of intrinsic activity at the M3-receptors. The pronounced susceptibility of WAL 2014 FU-induced contraction to functional antagonism by beta-adrenoceptor activation provides an explanation for the failure of the drug to induce bronchospasm in vivo.  相似文献   

9.
Atrial fibrillation occurring after open heart surgery largely depends on heterogeneous dispersion of refractoriness. To investigate the contribution of the autonomic nervous system in this phenomenon, we studied the regional distribution of neurally induced atrial electrophysiological events. Electrical stimulation of the right atrial fat pad, acetylcholine injection into the sinus node artery, and stimulation of the right and left vagosympathetic trunks were compared with respect to detailed atrial mapping. Unipolar electrograms were recorded from 127 atrial sites before and after neural stimulation or acetylcholine injection (10(-7) mol) in 8 anesthetized dogs. Regional changes in atrial repolarization were estimated by epicardial isointegral maps generated from computed values of the area under each electrogram and plotted on an atrial grid. The anatomical distribution of the sinus node artery was assessed by intra-arterial injection of microspheres. The effects of right and left vagal and right atrial fat pad stimulation extended contralaterally. Acetylcholine injected into the sinus node artery affected the lower left atrium whereas no microspheres could be found in this region upon microscopic examination. Therefore, this effect was possibly related to cholinergic activation of neuronal cell bodies located in the right atrial wall and projecting to the lower left atrium, supporting the hypothesis that local circuit neurons were involved in the activation of the intrinsic nervous system of the heart.  相似文献   

10.
Mediatophore is a protein of approximately 200 kDa able to translocate acetylcholine in response to calcium. It was purified from the presynaptic plasma membranes of the electric organ nerve terminals. Mediatophore is a homooligomer of a 16-kDa subunit, homologous to the proteolipid of V-ATPase. Cells of the N18TG-2 neuronal line are not able to produce quantal acetylcholine release. We show here that transfection of N18TG-2 cells with a plasmid encoding the mediatophore subunit restored calcium-dependent release. The essential feature of such a release was its quantal nature, similar to what is observed in situ in cholinergic synapses from which mediatophore was purified.  相似文献   

11.
1. We have investigated the pharmacological profile of the adenosine receptor mediating relaxation of the carbachol pre-contracted guinea-pig trachea. 2. 5'-N-Ethylcarboxamidoadenosine (NECA) and 2-chloroadenosine elicited concentration-dependent relaxations with pD2 (-log10 half-maximal values) of 6.37 +/- 0.04 and 5.25 +/- 0.09, with maximal relaxations of 73 +/- 7 and 208 +/- 38%, respectively. In the presence of 10 microM NECA, 2-chloroadenosine was able to relax the tissue further with a pD2 value of 4.74 +/- 0.11 and a maximal response of 252 +/- 68%. 3. CGS 21680, APEC and adenosine failed to elicit significant relaxations of precontracted tracheal rings at concentrations below 10 microM. At 10 microM, adenosine analogues elicited relaxations with the following order of magnitude (% relaxation): 2-chloroadenosine (75 +/- 16%) = NECA (69 +/- 16%) > APEC (25 +/- 8%) > CGS 21680 (11 +/- 2%) > adenosine (6 +/- 4%). 4. NECA-induced relaxation of precontracted trachea was antagonized by adenosine receptor antagonists with the rank order of apparent affinity (Ki, nM): PD 115,199 (27 +/- 8) = XAC (43 +/- 11) > CP 66,713(285 +/- 89) = DPCPX (316 +/- 114). 5. We conclude that the adenosine analogue-induced relaxation of guinea-pig tracheal rings fails to fit into the current classification of A2 adenosine receptors.  相似文献   

12.
The effects of K+ channel inhibitors on the relaxations induced by flufenamic and tolfenamic acids and lemakalim were examined in guinea-pig isolated trachea precontracted with prostaglandin F2alpha (PGF2alpha, 1 microM). Flufenamic and tolfenamic acids (0.1-33 microM) and lemakalim (0.01-33 microM) relaxed guinea-pig trachea in a concentration-dependent manner. Tetraethylammonium (0.5-2 mM), a nonspecific inhibitor of K+ channels, inhibited the relaxations induced by flufenamic and tolfenamic acids without affecting lemakalim-induced relaxation. Charybdotoxin (ChTX, 33-100 nM), an inhibitor of the large Ca2+-activated K+ channels (BK(Ca)), also inhibited the relaxations induced by flufenamic and tolfenamic acids without affecting lemakalim-induced relaxation. Glipizide (3.3-33 microM), an inhibitor of the ATP-sensitive K+ channels (K(ATP)) inhibited lemakalim-induced relaxation without affecting those induced by flufenamic and tolfenamic acids. Our results indicate that the relaxations of guinea-pig isolated trachea by flufenamic and tolfenamic acids are due to activation of BK(Ca). The relaxant mechanism of flufenamic and tolfenamic acids thus differs from that of lemakalim, an activator of K(ATP).  相似文献   

13.
BACKGROUND: Severe and therapy-resistant pruritus is the most prominent feature of macular (MA) and lichen (LA) amyloidosis that leads to further amyloid deposition by recurrent frictional trauma to the epidermis. Of the various therapeutic modalities with variable success, the most encouraging and beneficial effect has been observed with topical dimethyl sulfoxide (DMSO) therapy. In a previous study, we achieved marked clinical improvement in nine of 10 patients in a daily treatment regimen over 6-20 weeks, but relapses occurred in the post-treatment follow-up period. The aims of this study are to investigate whether the patients would benefit from intermittent therapy and to determine the optimal application interval of DMSO to maintain the relief of symptoms. METHODS: Thirteen patients with histopathologically verified cutaneous amyloidosis (five MA, two LA and six biphasic) were enrolled in the study. They were treated once daily with a 50 or 100% DMSO solution until pruritus disappeared. Then, DMSO was applied at increasing intervals until the widest effective application interval for maintenance of relief was reached. Patients were regularly followed-up by a scoring system for pruritus, papules, and pigmentation, control biopsies, photographs, blood biochemistry, and side-effects. RESULTS: The mean time required for the disappearance of pruritus was 4.1 weeks. Remarkable flattening of the papules was achieved after an average therapy period of 9 weeks. After a total therapy period of 6.5 months, a nearly 50% remission in pigmentation and >70% flattening of papules were achieved. The widest effective DMSO application interval was 8.6 days. The side-effects of therapy were contact urticaria, desquamation, burning sensation, and garlic-like breath odor, which were more prominent with the higher concentration of DMSO. In interval therapy, side-effects were tolerated more easily than in daily therapy. No reduction of amyloid deposits was revealed in control biopsies. CONCLUSIONS: Locally applied DMSO can break the vicious "pruritus-amyloid deposition-pruritus" cycle in patients with MA and LA. In addition to its daily use, interval therapy seems to maintain this effect and enables patients to tolerate side-effects more easily.  相似文献   

14.
The NMDA-evoked acetylcholine release from striatal slices and synaptosomes was investigated in rats subjected to unilateral injection of 6-hydroxydopamine into the substantia nigra. In slices prepared from the striatum contralateral to the lesion, the NMDA-evoked endogenous acetylcholine release was not significant at 10 microM NMDA and maximal at 100 microM NMDA (124 +/- 19%). Conversely, in slices taken from the dopamine-depleted striatum, NMDA was effective even at 10 microM (41 +/- 4%), and at 100 microM (196 +/- 24%) efficacy was nearly doubled. In synaptosomes prepared from the contralateral striatum, NMDA maximally stimulated 20 mM KCl-induced endogenous acetylcholine release at 1 microM (66 +/- 5.1%), with lower concentrations (0.01-0.1 microM) being ineffective. Conversely, in synaptosomes prepared from the dopamine-depleted striatum, NMDA maximally enhanced the K+/--evoked acetylcholine release at 0.1 microM (118 +/- 12.4%). Concentration-response curves of NMDA-evoked acetylcholine release in sham-operated rats could be superimposed on those observed in the contralateral striatum of the 6-hydroxydopamine-lesioned animals. The present data support the view of an increased glutamatergic regulation of striatal acetylcholine release via pre- and postsynaptic NMDA receptors during Parkinson's disease.  相似文献   

15.
The activation of autoreceptors is known to be important in the modulation of presynaptic transmitter secretion in peripheral and central neurons. Using whole-cell recordings made from the free growth cone of myocyte-contact motoneurons of Xenopus cell cultures, we have observed spontaneous nerve terminal currents (NTCs). These spontaneous NTCs are blocked by d-tubocurarine (d-TC) and alpha-bungarotoxin (alpha-BuTx), indicating that endogenously released acetylcholine (ACh) can produce substantial membrane depolarization in the nerve terminals. Local application of NMDA to the growth cone increased the frequency of spontaneous NTCs. When the electrical stimulations were applied at the soma to initiate evoked-release of ACh, evoked ACh-induced potentials were recorded in the nerve terminals, which were inhibited by d-TC and hexamethonium but not by atropine. Replacement of normal Ringer's solution with high-Mg2+, low-Ca2+ solution also reversibly inhibited evoked ACh-induced potentials. The possible regulatory role of presynaptic nicotinic autoreceptors on the synaptic transmission was also examined. When the innervated myocyte was whole-cell voltage-clamped to record synaptic currents, application of hexamethonium inhibited the amplitude of evoked synaptic currents at a higher degree than that of iontophoretic ACh-induced currents. Furthermore, hexamethonium markedly reduced the frequency of spontaneous synaptic currents at high-activity synapses. Pretreatment of neurons with alpha-BuTx also inhibited the evoked synaptic currents in manipulated synapses. These results suggest that ACh released spontaneously or by electrical stimulation may act on the presynaptic nicotinic autoreceptors of the same nerve terminals to produce membrane potential change and to regulate synaptic transmission.  相似文献   

16.
We have investigated the role of metabotropic glutamate receptors linked to phosphoinositide hydrolysis in the control of glutamate release in cerebrocortical nerve terminals. The activation of these receptors with the agonist 3,5-dihydroxyphenylglycine enhanced intra-synaptosomal diacylglycerol and facilitated both the depolarization-induced increase in the cytosolic free Ca2+ concentration and the release of glutamate. However, 5 min after receptor activation, a second stimulation of the pathway with the agonist failed to produce diacylglycerol and to facilitate glutamate release. Interestingly, during the period in which the diacylglycerol response was desensitized, a strong agonist-induced inhibition of Ca2+ entry and glutamate release was observed. This change in the presynaptic effects of 3,5-dihydroxyphenylglycine is reversible since 30 min after the first stimulation, the agonist-induced inhibition of release disappeared, whereas both the production of diacylglycerol and the facilitation of glutamate release were recovered. The tonic elevation of the extracellular glutamate concentration from basal levels (0.8 microM) up to 5 microM also produced the switch from facilitation to inhibition in the receptor response. The existence of this activity-dependent switch in the presynaptic control of glutamate release suggests that release facilitation is limited to conditions under which an appropriate clearance of synaptic glutamate exists, probably to prevent the neurotoxic accumulation of glutamate in the synapse.  相似文献   

17.
We investigated the effects of hydroxyl radical scavengers on peroxynitrite (OONO-)-evoked acetylcholine (ACh) release from mouse cerebral cortical neurons. N,N'-dimethylthiourea, a hydroxyl radical scavenger, dose-dependently increased OONO(-)-evoked ACh release. Other hydroxyl radical scavengers such as uric acid and mannitol, also enhanced OONO(-)-evoked ACh release, although these enhancing effects were not found in the absence of OONO-. In addition, OONO(-)-induced [45Ca2+]influx was significantly facilitated by the scavengers, whereas no effects of the scavengers on [45Ca2+]influx was observed in the absence of OONO-. These results indicate that hydroxyl radical scavengers enhance OONO(-)-evoked ACh release via the facilitation of OONO(-)-induced [45Ca2+]influx.  相似文献   

18.
1. The temporal features and strength of recurrent facilitatory potentials were examined in pairs of lumbosacral motoneurons that were separated by a known distance and were identified by antidromic stimulation of muscle nerves. One motoneuron was stimulated by injecting depolarizing current pulses, and responses were recorded in the second motoneuron. The distance between motoneurons in pairs was also measured to assess the spatial distribution in strength of recurrent facilitation in motor pools. All motoneurons in these pairs innervated muscles that act as hip or ankle extensors. 2. Recurrent facilitatory potentials were found frequently among motoneurons innervating the hindlimb extensor muscles examined. Several categories of recurrent facilitatory responses were identified. One category was composed of facilitation responses that followed an inhibition response. A second category was composed of facilitation responses that were not preceded by a significant inhibition and consisted of a monophasic response. There was a considerable range of latencies in this category. 3. Responses in which recurrent facilitatory potentials were preceded by recurrent inhibitory postsynaptic potentials (RIPSPs) among close motoneuron pairs demonstrated an inverse correlation between the durations of the facilitatory and the inhibitory phases. In addition, the duration of inhibition responses without facilitation was longer on average, than the duration of inhibitory responses that were followed by facilitation. It was suggested that recurrent facilitation may restrict the time course of RIPSPs. 4. In contrast to the topographic distribution of RIPSPs described in the previous report, amplitudes of monophasic facilitations were directly correlated with the distance separating motoneurons in pairs, rather than inversely correlated as was the case for RIPSP amplitudes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The present study was done to establish whether peptidergic afferent inputs can modulate parasympathetic neurons of the guinea-pig cardiac ganglion. Whole mount preparations from the guinea-pig heart were utilized to localize afferent terminals by immunohistochemistry and for intracellular recordings from individual neurons in situ. Action potentials could be elicited by both intracellular current injection and stimulation of interganglionic fiber bundles. Two types of neuron, phasic (95%) and tonic (5%) as defined by their firing properties, were observed. High frequency (5-10 Hz) interganglionic fiber stimulation produced a calcium-dependent, slow depolarization in many cells which was not blocked by 100 microM hexamethonium or 1 microM atropine. A prolonged depolarization was also produced by local application of capsaicin (1 mM), which releases substance P and CGRP from afferent nerve terminals. Microinjection of the mammalian tachykinins substance P, neurokinin A and neurokinin B (all at 100 microM), also produced a slow depolarization. Application of specific agonists for the tachykinin receptor subtypes indicated that these neurons express both NK2 and NK3 receptors. Individual cells were filled with neurobiotin to examine their morphology and the preparations were counter-stained for SP-like immunoreactivity. The results demonstrated that SP-positive fibers are found in close apposition to both phasic and tonic neurons. From these results, we suggest that the parasympathetic neurons of the guinea-pig cardiac ganglion receive inputs from peptidergic, afferent fibers and that this input provides a pathway for potential local reflex control of cardiac function.  相似文献   

20.
The modulation of acetylcholine (ACh) release by 5-HT3 receptor activation was studied using in vivo microdialysis. Spontaneous and K+-stimulated ACh release were measured in frontoparietal cortex and hippocampus of freely moving rats. Two consecutive exposures to high K+ produced ACh release of similar magnitude. In the cortex, serotonin (5-HT) failed to alter spontaneous ACh release, but caused a concentration-dependent decrease of K+-evoked ACh release. Phenylbiguanide (PBG) and m-chlorophenylbiguanide, two selective 5-HT3 agonists, mimicked the 5-HT responses, but 8-hydroxy-2-(di-n-propylamino)tetralin, a selective 5-HT1A agonist, was without effect. However, PBG failed to modify K+-evoked ACh release from the hippocampus. Systemic and local administration of a highly selective 5-HT3 antagonist, tropisetron ((3-alpha-tropanyl)1H-indole-carboxylic acid ester) blocked the effect of both 5-HT and PBG. The inhibition of ACh release by PBG was sensitive to tetrodotoxin. These observations provide direct evidence that, in rat cortex, 5-HT modulates in-vivo release of ACh through activation of 5-HT3 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号