首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FePt films with various thicknesses (t) of 5 to 50 nm are deposited on Si(100) substrate without any underlayer by in-situ annealing at substrate temperature (Ts) of 620 °C. A strong (001) texture of L10 FePt film is obtained and presents high perpendicular magnetic anisotropy as the film thickness increases to 30 nm. By further increasing the thickness to exceed 30 nm, the (111) orientation of L10 FePt is enhanced greatly, indicating that the quality of perpendicular magnetic anisotropy degrades when the thickness of the FePt film is greater than 30 nm. The single-layered FePt film with thickness of 30 nm by in-situ depositing at 620 °C shows good perpendicular magnetic properties (perpendicular coercivity of 1033 kA/m (13 kOe), saturation magnetization of 1.08 webers/m2 and perpendicular squareness of 0.91, respectively), which reveal its significant potential for perpendicular magnetic recording media.  相似文献   

2.
采用磁控溅射法在硅基片上生长FePt纳米颗粒薄膜。在硅片表面生长MgO籽层用来引发FePt合金薄膜的fct织构,加入C来减小其颗粒尺寸,加入Ag来增强其L10有序度。采用X射线衍射仪(XRD)、超导量子干涉仪(SQUID)和高分辨率透射电镜(TEM)对FePt薄膜进行表征。结果表明制备的薄膜样品具有优良的L10相结构,其M-H曲线表明方形度很好,垂直矫顽力HC有2467 kA/m,颗粒大小为10.4 nm。该薄膜非常适合用做下一代高密度磁存储媒质,可有效提高信息存储密度。  相似文献   

3.
To find a method to form nano-size FePt alloy for ultra-high density magnetic recording media, this work concentrated on the formation mechanisms of nano-island FePt films on amorphous glass substrates. FePt films of different thicknesses (1-10 nm) were deposited on amorphous glass substrates and post-annealed at 700 °C for 10 and 30 min. The configuration of the film changed during the annealing process due to the surface energy difference between the glass substrate and FePt alloy. Investigation of the microstructures and magnetic properties of the ordered L10 FePt films revealed that the 1 nm FePt film annealed at 700 °C for 10 min had perpendicular magnetic anisotropy and good reproducibility of forming well-separated FePt nano-size islands for ultra-high density magnetic recording media.  相似文献   

4.
Grain-to-grain anisotropy field variation has become one of the main causes of medium noise, especially in perpendicular thin film media. In this paper, we present an electron microscopy investigation and theoretical analysis on the grain-to-grain anisotropy field variation in various types of thin film recording media. In alloyed film media, the intrinsic grain-to-grain composition variation would present a lower limit on grain size, thereby limiting area recording density. It is also argued that partial ordering in L1/sub 0/ materials such as FePt would yield large anisotropy field variation, especially for low values of order parameter.  相似文献   

5.
A well-controlled method to fabricate FePt thin films with the (200) texture and longitudinal magnetic anisotropy for high-density magnetic recording media is reported. FePt-Ag nanocomposite thin films with L1(0) ordered FePt grains embedded in an Ag matrix were deposited on the Cr90Ru10/glass by co-sputtering from Ag and FePt targets. The Ag doping suppressed the (001) texture but improved the L1(0) FePt (200) texture. The magnetic easy axis of FePt-Ag thin films changed from perpendicular to longitudinal in direction. In-plane coercivity of the films varied from 0.8 kOe to 6.5 kOe, depending on Ag contents in the films and under-layer thickness. The change from the (001) to (200) texture could be due to the competition of grain-boundary energy and epitaxial-strain energy.  相似文献   

6.
The crystallographic structure and magnetic properties of L1(0) FePt thin films deposited at different substrate temperature were investigated systematically in present paper. The ordered L1(0) FePt thin film was developed when substrate temperature is higher than 300 degrees C. The ordering parameter S, the degree of tetragonality c/a, and the epitaxial quality of the films, increase with increasing substrate temperature. The squareness and coercivity in the direction perpendicular to the film increase as the substrate temperature is increased and the perpendicular anisotropy is developed when the substrate temperature is higher than 300 degrees C. The magnetic anisotropy Ku increases with increasing substrate temperature and it might be concluded that the magnetic anisotropy of ordered L1(0) FePt thin films mainly stems from the magnetocrystalline origin and also possibly due to pair ordering mechanism.  相似文献   

7.
Sputter-deposited FePt films exhibit an in-plane magnetic anisotropy when MgO is used as the capped layer. The perpendicular magnetic anisotropy of FePt films can be enhanced by introducing a Ag capped layer instead of a MgO capped layer. Although the in-plane coercivity (Hc//) of FePt films decreases slightly after introducing a Ag capped layer instead of a MgO capped layer, the perpendicular coercivity (Hc) is increased significantly from 3169 Oe to 6726 Oe. Auger electron spectroscopy analysis confirms that Ag atoms diffuse from the capped layer into the FePt magnetic layer and are mainly distributed at the grain boundary of FePt. This phenomenon results in enhancement of the grain boundary energy and inhibition of grain growth, thus increasing the perpendicular coercivity and reducing the grain size of the FePt film.  相似文献   

8.
The single-layered Fe-Pt films with thickness of 30 nm are in-situ deposited directly on Si substrate at various substrate temperatures (Ts) of 350 to 590 degrees C. As the Fe-Pt film is sputtered at substrate temperature is 350 degrees C, it shows (111) preferred orientation and tends to in-plane magnetic anisotropy. The L1(0) Fe-Pt film with (001) texture is obtained and exhibited perpendicular magnetic anisotropy as the substrate temperature is increased to 470 degrees C. The perpendicular coercivity (Hc perpendicular), saturation magnetization (Ms) and perpendicular squareness (S perpendicular) of this film are 6.9 kOe, 674 emu/cm3 and 0.89, respectively, which reveal its significant potential as perpendicular magnetic recording media.  相似文献   

9.
High anisotropy L1(0) ordered FePt thin films are considered to have high potential for use as high areal density recording media, beyond 1 Tera bit/in2. In this paper, we review recent results on the synthesis and magnetic properties of L1(0) FePt nanocomposite films. Several fabrication methods have been developed to produce high-anisotropy FePt films: epitaxial and non-epitaxial growth of (001)-oriented FePt:X (X = Au, Ag, Cu, C, etc.) composite films that might be used for perpendicular media; monodispersed FePt nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; self-assembled FePt particles prepared with chemical synthesis by reduction/decomposition techniques, etc. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. FePt and related films show promise for development as heat-assisted magnetic recording media at extremely high areal densities. The self-assembled FePt arrays show potential for approaching the ultimate goal of single-grain-per-bit patterned media.  相似文献   

10.
The soft/hard Fe/FePt film with perpendicular magnetization has been deposited on a glass substrate. The (001) oriented L10 FePt film was obtained when annealed by rapid thermal process at 800 °C and a Fe layer was deposited at room temperature with thicknesses of 2 nm to 20 nm. Controlling the Fe layer thickness allowed modification of the hysteresis loops from out-of-plane rigid magnet to in-plane exchange-spring like magnet due to the nanometer scale interface coupling. When the Fe layer thickness increased to 2 nm, the out-of-plane coercivity is reduced to 5.9 kOe but the remanence ratio (0.98) is still high. The Fe (2 nm)/FePt film shows perpendicular magnetization with linear in-plane hysteresis loop. The remanence ratio is reduced to 0.85 when the Fe layer thickness increased to 5 nm. When the Fe layer thickness was varied up to 10-20 nm, the in-plane hysteresis loop shows exchange-spring like behavior with two-step magnetization reversal processes. The films with perpendicular coercivity were moderated by the thickness of soft magnetic layer.  相似文献   

11.
Percolated perpendicular FePt-MgO films with a (Fe48 Pt 52)100-x-(MgO)x/Pt(001)/Cr(002) structure were prepared by conventional dc magnetron sputtering (x=0-6.13). Magnetic measurements demonstrate that the coercivity of the magnetic film drastically increases from 169 to 285 kA/m as the MgO content is increased from 0 to 0.15 vol.%. However, the grain sizes of the FePt phase do not significantly varying upon doping with MgO. MgO does not appear at the grain boundaries of the FePt phase, but is present as crystalline dots that are uniformly precipitated in the FePt matrix. The MFM images revealed that the domain structure transformed from extending to isolate when the MgO dots precipitated into the FePt grains. Consequently, the MgO dots serve as pinning sites of the domain wall and enhance perpendicular coercivity. Percolated perpendicular magnetic recording is thus regarded as a solution to the problem of thermal instability in ultrasmall grains  相似文献   

12.
The microstructure and magnetic properties of multilayer [Os(t)/FePt(x)]n films on a glass substrate with a 10 nm Os buffer layer by ion beam sputtering have been studied as a function of the annealing temperatures between 300 and 800 degrees C. Here, t = 0.2, 1 or 5 nm and x varied from 10, 20, 25, 50, to 100 nm with its associated n value of 10, 5, 4, 2, and 1, respectively. No diffusion evidence was found in samples with a thin Os layer and t > or = 1 nm. The average grain size of the multilayer films can be well controlled by both annealing temperature and thickness of the FePt layer by a very thin Os space layer with t > or = 1 nm. The enhancement of H(c) can be understood from the fact that for a FePt film with an Os spacer layers, the increasing number of Os layer will inhibit the grain growth of FePt grains and enriches the grain boundary. We have experimentally demonstrated that even with a very thin 1 nm Os spacer layers, the [Os(t)/FePt(x)]n multilayer films can exhibit good hard magnetic properties and are attractive candidates for ultrahigh density magnetic recording media.  相似文献   

13.
Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.  相似文献   

14.
L10有序FePt合金薄膜有大的各向异性能、矫顽力和饱和磁化强度,而且根据制备工艺条件的不同,其易磁化轴可以平行或垂直于膜面,因此极有可能成为下一代超高密度磁存储的介质,近年来引起了广泛的关注.详细介绍了Fept薄膜近年来的研究结果,分析了其大矫顽力的机制、降低有序化温度、控制易磁化轴取向、降低粒子间相互作用的方法等对磁存储至关重要的问题,并对其在磁存储中的应用前景作了分析.  相似文献   

15.
Perpendicular magnetic recording media, composed of granular-type FePt-MgO films on Fe-Ta-C soft magnetic underlayer (SUL), have been fabricated on to 2.5-in glass disks. [001] textured FePt granular films with high-perpendicular magnetic anisotropy were obtained by annealing the FePt/MgO multilayer films. The FePt grain size, perpendicular coercivity, magnetic activation volume, and the exchange coupling between the FePt grains were found to be strongly dependent on the initial multilayer structures and the annealing conditions. The recording performance of the disks was evaluated by a spin-stand. The obtained results reveal a close correlation between the recording performance and magnetic properties. The thermal stability of the granular-type FePt media was studied using high-temperature magnetic force microscopy (MFM) technique, equipped with in situ sample heating, in the temperature range 25/spl deg/C-200/spl deg/C. The estimated signal decay at high temperature is ascribed to the temperature dependent magnetic anisotropy behavior.  相似文献   

16.
FePt (50 nm) and [FePt(xnm)/AlN(1, 2, 3 nm)]10 (x=2, 3 nm) films were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of AlN layer thickness on structure and magnetic properties of FePt/AlN multilayers. Superlattice (0 0 1) peaks can be found in the grazing incidence X-ray diffraction of FePt and [FePt (3 nm)/AlN (1, 2, 3 nm)]10 films, which indicate that the FCC phase has been partially transformed into ordered L10 phase. Compared with the single layer FePt film, superlattice (0 0 1) peaks of FePt/AlN multilayers are weak and wide, which indicates that the introducing of AlN hinders the growth of FePt particle, and also shows the introducing of AlN is not beneficial to the transformation from FCC phase to L10 phase. In addition, the low-angle XRD spectra show the layered structure of FePt/AlN has been broken after annealing. The coercivities, particle size, intergrain exchange interactions of FePt/AlN films are decreased with increasing AlN layer thickness.  相似文献   

17.
Higher areal density for magnetic recording is needed to provide larger storage capacities on harddisk drives. However, as the recording bit size of traditional magnetic recording materials (such as Co/Cr) approaches 10 nm, the magnetic direction of each recording bit would become unstable at room temperature due to thermal fluctuation. To solve this problem, efforts have been made using two methods: one method is to replace the disk media with new materials possessing higher magnetic anisotropy which would lead to better thermal stability; and the second one is to employ different configurations for the recording layer. FePt with patterned media configuration is a combination of these two methods. In this paper we review some novel and interesting methods of patterning FePt for magnetic recording, including thermal patterning, self-assembly patterning, and lithography patterning.  相似文献   

18.
In the present study, 57FePt films are prepared with reactive ion beam sputtering using mixture of argon and nitrogen gases. Energy-dispersive X-ray reflectivity is used to estimate the thickness of the as-deposited films. Structural and magnetic properties of the as-deposited and annealed films are studied using grazing incidence X-ray diffraction (GIXRD), magneto-optical Kerr effect (MOKE) and conversion electron Mossbauer spectroscopy (CEMS). Significant difference in structural and magnetic properties i.e., formation of ordered L10 phase and perpendicular magnetic anisotropy are observed for the films prepared with mixture of nitrogen and argon as compared to the film prepared with argon only. From the GIXRD, peaks corresponding to the ordered face-centred tetragonal FePt phase are observed for the films prepared with mixture gas. The results of CEMS clearly show the perpendicular magnetic anisotropy (PMA) for the films prepared with mixture of nitrogen and argon. The observed enhanced chemical ordering and the development of PMA in the films prepared with mixture gas is due to the role played by the defects created as a consequence of nitrogen escape in the films with high temperature annealing.  相似文献   

19.
The possibility of 300-500 Gbit/in/sup 2/ perpendicular recording using granular recording media has been investigated through micromagnetic simulation based on the Langevin equation. Writability and thermal stability in 10 years were obtained changing media parameters such as the grain size D, the grain separation d, and the thickness of the recording layer t/sub mag/ for proper combination of the grain saturation magnetization M/sub s-grain/ and the grain perpendicular anisotropy energy K/sub u-grain/. It was found that high-density recording is realized under the large grain separation, the large grain saturation magnetization, and the large grain anisotropy energy. The read/write calculation using ordered medium with D of 4.2 nm, d of 2.3 nm, t/sub mag/ of 12.0 nm, M/sub s-grain/ of 1313 emu/cm/sup 3/, and K/sub u-grain/ of 7.0 Merg/cm/sup 3/ confirmed the possibility of 1303 kFCI and 1954 kFCI perpendicular recording, leading to 325 and 488 Gbit/in/sup 2/ with 250 kTPI (track pitch of 102 nm).  相似文献   

20.
The single-layered Fe100 − xPtx films of 30 nm thick with Pt contents (x) of 35-57 at.% are deposited on heated Si (100) substrate at a temperature (Ts) of 620 °C by magnetron co-sputtering. When the Pt content in the Fe-Pt alloy film is 35 at.%, the value of in-plane coercivity (Hc//) is close to perpendicular coercivity (Hc) and both values are about 800 kA/m. The FePt films exhibit perpendicular magnetic anisotropy when the Pt content increases to the values of between 45 and 51 at.%. The perpendicular coercivity, saturation magnetization (Ms) and perpendicular squareness (S) for Fe54Pt46 film are as high as 1113 kA/m, 0.594 Wb/m2 and 0.96, respectively. These magnetic properties reveal its significant potential as perpendicular magnetic recording media. Upon further increasing the Pt content to 57 at.%, the coercivity of the Fe-Pt film decreases drastically to below 230 kA/m and tends to be closer to in-plane magnetic anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号