首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays.  相似文献   

2.
A multilayer photoactive coating containing surface fluorinated TiO(2) nanoparticles and hybrid matrices by sol gel approach based on renewable chitosan was applied on poly(lactic acid) (PLA) film by a step wise spin-coating method. The upper photoactive layer contains nano-sized functionalized TiO(2) particles dispersed in a siloxane based matrix. For the purpose of improving TiO(2) dispersion at the air interface coating surface, TiO(2) nanoparticles were modified by silane coupling agent 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FTS) with fluoro-organic side chains. An additional hybrid material consisting of chitosan (CS) cross-linked with 3-glycidyloxypropyl trimethoxy silane (GOTMS) was applied as interlayer between the PLA substrate and the upper photoactive coating to increase the adhesion and reciprocal affinity. The multilayer TiO(2)/CS-GOTMS coatings on PLA films showed a thickness of ~4-6 μm and resulted highly transparent. Their structure was exhaustively characterized by SEM, optical microscope, UV-vis spectroscopy and contact angle measurements. The photocatalytic activity of the multilayer coatings were investigated using methyl orange (MeO) as a target pollutant; the results showed that PLA films coated with surface fluorinated particles exhibit higher activity than films with neat particles, because of a better dispersion of TiO(2) particles. The mechanical properties of PLA and films coated with fluorinated particles, irradiated by UV light were also investigated; the results showed that the degradation of PLA substrate was markedly suppressed because of the UV adsorptive action of the multilayer coating.  相似文献   

3.
液相沉积法制备TiO2薄膜及其亲水性能研究   总被引:6,自引:0,他引:6  
本文采用液相沉积法(LPD)制备了透明TiO2薄膜,并研究了其紫外一可见吸收性能手紫外光照射下薄膜亲水性能的变化。发现热处理前后的薄膜具有相似的紫外吸收性能,在上光照射下亲水性能都有提高,热处理后的薄膜在紫外光照射下可与水完全润湿。和X光电子能谱对薄膜表面的分析表明,热处理前后的薄膜亲水性能的差异是由于薄膜表面的Ti-O键合及TiO2成分增多,在紫外光照射下,Ti^4+变为Ti^3+并有利于水的吸  相似文献   

4.
We have developed a simple method of fabricating transparent conductive films with a high mechanical strength on glass and indium tin oxide substrates. It does not require a large excess of organic solvents and polymerization catalysts and can yield smooth films by spin-coating of a mixture of a commercially available aqueous dispersion of poly(3,4-ethylenedioxythiophene)-poly(4-styrene sulfonate) and a neat liquid of tetraethyl orthosilicate. Preparation conditions such as feed ratio, kinds of additives, and annealing temperature and time were optimized to give highly conductive, transparent and mechanically strong films.  相似文献   

5.
Ti oxide films with thicknesses in the 1.9–8.0 μm range were sputter deposited onto electrically conductive transparent glass substrates. X-ray diffraction indicated a dominating rutile structure. The films were used to investigate photo-electrocatalytic degradation of 4-chlorophenol in water solution, employing a specially designed reactor. UV light was used for the photocatalysis, and a bias potential was applied for avoiding electron-hole recombination. The photocurrent and the kinetics of the catalytic reaction were tested with potentiostatic and spectrophotometric measurements. The reaction products were investigated using different arrangements of a Ti oxide working electrode and a Pt counter electrode. UV irradiation through the glass substrate yielded an enhancement of the reaction kinetics for increased film thicknesses and applied bias potential.  相似文献   

6.
Polystyrene-b-polylactide (PS-PLA) was employed as a precursor to nanoporous thin films containing perpendicular cylindrical channels. Cylinder-forming PS-PLA was spin coated onto Si substrate and solvent annealed using acetone, chlorobenzene and tetrahydrofuran (THF) for different durations. By atomic force microscopy, three types of final morphology were observed at the free surface of the films (PLA surface layer, perpendicular cylinders and parallel cylinders) depending on the type of solvent and annealing time. Well-organized perpendicular domains were obtained by annealing in THF. From this oriented PS-PLA annealed thin films, a mild hydrolysis led to a highly ordered array of perpendicularly-oriented cylindrical nanopores arranged on a hexagonal lattice, rendering the resulting nanoporous mask useful for nanopattern transfer processes. The weak resistance of the film/substrate interface during PLA etching was overcome by UV light exposure prior hydrolysis.  相似文献   

7.
A transparent rutile thin film 100 nm thick was fabricated on a quartz glass substrate; it was responsive to visible light and had a higher sensitivity to UV light than an anatase thin film formed by sol–gel method under identical conditions. The crystal structure was determined by observations using X-ray diffraction, Raman spectra, and a transmission electron microscope. The oxygen/titanium ratio of the rutile thin films was 1.78 according to the XPS peaks. The photoreactivity and photoinduced hydrophilicity of the rutile thin films was examined by measuring the pseudo first-order rate for the decoloration of methylene blue in an aqueous solution and the water contact angle, respectively. The high photoreactivity and photosensitivity of the O-deficient rutile thin film, whose optical band edge and refractive index were 3.10 eV and 2.2, respectively, were due to electron traps and assisted by O-defects within the rutile particles.  相似文献   

8.
Abstract

We have developed a simple method of fabricating transparent conductive films with a high mechanical strength on glass and indium tin oxide substrates. It does not require a large excess of organic solvents and polymerization catalysts and can yield smooth films by spin-coating of a mixture of a commercially available aqueous dispersion of poly(3,4-ethylenedioxythiophene)-poly(4-styrene sulfonate) and a neat liquid of tetraethyl orthosilicate. Preparation conditions such as feed ratio, kinds of additives, and annealing temperature and time were optimized to give highly conductive, transparent and mechanically strong films.  相似文献   

9.
溶胶—凝胶法制备YBCO超导薄膜微细图形   总被引:1,自引:0,他引:1  
以甲醇为溶剂,以醋酸铜、醋酸钇和醋酸钡为起始原料,二乙烯三胺、三氟乙酸、丙烯酸为添加剂,采用溶胶-凝胶法制备了具有紫外感光性的YBCO溶胶及其凝胶薄膜,其紫外吸收峰在250nm附近,对应于铜络合物的电子跃迁吸收,随着紫外光的照射,其峰值逐渐降低,凝胶在有机溶剂中的溶解性也发生变化,显示了凝胶薄膜的紫外感光性.基于这一特性,本文提出了一种YBCO 超导薄膜图形制备新方法,即利用凝胶薄膜自身的紫外感光性,使紫外光通过掩模照射薄膜,然后在甲醇中溶洗,进一步热处理,得到了YBCO超导薄膜图形.结果表明,图形化的YBCO薄膜具有较强的c轴取向,超导转变温度TC达到92K.  相似文献   

10.
以钛酸丁酯(TBOT)为前驱物、乙醇(EtOH)为溶剂、水为反应剂、盐酸为催化剂,采用溶胶-凝胶技术制备了无色透明TiO2溶胶和纳米TiO2粉体.运用正交试验设计和极差分析,优化了制备无色透明TiO2溶胶的工艺.利用紫外-可见光谱(UV-Vis)分析了溶胶的光学性能,傅里叶变换红外光谱(FT-IR)表征了凝胶的分子结构...  相似文献   

11.
Fabrication of highly oriented (002) ZnO film on glass by sol-gel method   总被引:1,自引:0,他引:1  
In this study high quality (002) ZnO films were deposited on glass substrate by a sol-gel spin coating process. The as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature in particular. The chemical composition of the precursor sol and the intermediates produced in the films heating process were analyzed by thermo gravimetric analysis/differential thermal analysis (TGA/DTA). The microstructure and its optical properties of ZnO films were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis) and photoluminescence. TGA/DTA showed that a significant weight loss occurred at around 200-300 °C and the weight stabilized at 300 °C. An extremely sharp (002) diffracted peak in XRD patterns indicated the high preference in crystallinity of these films. FESEM micrographs revealed that the films were filled with particulates with size ranging from 10 to 25 nm as post annealing temperature increased from 400 to 500 °C and turned into porous films at 600 °C. UV-Vis has shown that the films were highly transparent under visible light and had a sharp absorption edge in the ultraviolet region at 380 nm. The measured optical band gap values of the ZnO thin films were around 3.24-3.26 eV. Photoluminescence spectra revealed a strong UV emission centered at about 390 nm corresponding to the near-band-edge emission with a weak defect-related emission at about 520 nm. The intensity of UV emission increased with the annealing temperature. This may be attributed to a higher quality ZnO film while annealed at higher temperature.  相似文献   

12.
Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV-vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation.  相似文献   

13.
A series of uniform and transparent boron-doped TiO2 films were synthesized from autoclaved-sol without organic solvent at low temperature. As-prepared B-TiO2 films with two layers were characterized by XRD, DRS, XPS and AFM. The photocatalytic characteristics were measured based on the degradation of Rhodamine B (RhB) solution under visible or UV light. The results indicated that the anatase phase was the main crystal form of the films, containing a small amount of brookite. The presence of boron caused a red shift in the absorption band of TiO2 films. The doped boron was mainly presented in the form of B2O3, O-Ti-B and O-Ti-B bonds, confirming that autoclaved-sol synthesis at low temperature allowed for incorporation of boron atoms into the TiO2 matrix. Transmission of the films was about 90% in the visible region. The 10% (atom) B-TiO2 film exhibited the best photocatalytic activity both in visible and UV light.  相似文献   

14.
用溶胶-凝胶法和浸渍-提拉工艺在载波片上制备了均匀、透明的WO^3+掺杂的纳米TiO2薄膜.用XRD、紫外-可见分光光度计分析了样品的晶相和光吸收性能,研究了WO^3+的掺杂、掺杂量及热处理温度对薄膜可见光致亲水性的影响,并考察了薄膜在停止光照后,其亲水性能的变化.结果表明,与纯TiO2薄膜相比,掺WO^3+的TiO2薄膜对可见光的吸收有所增强,并有一定的红移现象,且在可见光照射下,亲水性能都有提高,WO^3+的最佳掺杂量为3%(物质的量比);薄膜的最佳煅烧温度为773K;停止光照后,掺WO3+的TiO2薄膜亲水性能持续的更久.  相似文献   

15.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

16.
钇稳定氧化锆薄膜的制备及其微细加工   总被引:3,自引:0,他引:3  
以甲醇为溶剂,硝酸氧锆、硝酸钇为前驱物,采用溶胶-凝胶方法,通过引入化学修饰剂乙酰丙酮(AcAcH),使乙酰丙酮和锆离子形成螯合物,得到了具有紫外光感光性的溶胶及其凝胶薄膜,提出了YSZ薄膜的微细图形加工新方法.UV-Vis.分光光度计的紫外光谱测试结果表明:乙酰丙酮与锆离子形成的螯合物在室温、可见光、大气环境下,可以存在于凝胶薄膜中,并具有较好的热稳定性和光化学稳定性,其紫外光谱的特征吸收峰大约在310nm附近;325nm紫外激光光源照射凝胶薄膜,能破坏、分解凝胶薄膜中的这种螯合物结构,使凝胶薄膜的物理化学性质发生变化,实验发现,经过紫外激光照射的凝胶薄膜在适当的有机溶剂(如甲醇等)中的溶解度和溶解速度显著降低,利用这一特性,采用325nm紫外激光通过掩膜照射凝胶薄膜,并在适当的有机溶剂中溶洗掉未受照射的区域,经过800℃,20min热处理,得到了具有微细图形的YSZ薄膜,XRD测试表明该薄膜相结构为立方相.  相似文献   

17.
Bifunctional Eu(BMDM)3@polysiloxane nanoparticles were prepared through reprecipitation–encapsulation methods using 1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (BMDM) ligand and octyltrimethoxysilane (OTS) precursor and embedded into waterborne polyurethane (PU) coatings to fabricate transparent optical composite films. The photostability and thermostability of the nanoparticles in water and their ability to block UV and convert light when embedded in PU films were investigated. In comparison with the control Eu(BMDM)3 nanoparticles, the Eu(BMDM)3@polysiloxane nanoparticles, especially those prepared at a Eu(BMDM)3/OTS mole ratio of 1:2, exhibited far superior stability under storage conditions, UV irradiation, and heating. They also showed excellent UV-shielding and highly efficient light conversion properties because of the protective polysiloxane.  相似文献   

18.
The beta-cyclodextrin-modified Ag-TiO2 core-shell nanoparticles were prepared by sodium borohydrate reduction of AgNO3 and the subsequent hydrolysis of the tetraisopropyl orthotitanate in an aqueous medium. Inversely in the preparation of beta-cyclodextrin-modified TiO2-Ag core-shell nanoparticles, first hydrolysis and then following reduction were carried out. The synthesized spherical core-shell nanoparticles were highly water-dispersible and had an average diameter in the range of 9 to 12 nm. A significant shifting of surface plasmon band was observed for the synthesized Ag-TiO2 and TiO2-Ag core-shell nanoparticles. On a model reaction, namely, the photodegradation of phenol by the UV light irradiation, the photocatalytic property of TiO2 nanoparticles was enhanced, when the Ag nanoparticle was embedded in the core of TiO2 nanoparticles but TiO2 nanoparticles coated by Ag shell decreased the photocatalytic property of TiO2 nanoparticles. The mechanism is ascribed to the surface plasmon characteristics of Ag in the core of the TiO2 nanoparticles under the acceleration by host-guest inclusion characteristics.  相似文献   

19.
Kaiqing Luo  Limin Wu  Bo You 《Thin solid films》2010,518(23):6804-6810
Highly-crystalline zirconia (ZrO2) nanoparticle was functionalized with 3-(N-aminoethyl) aminopropyltrimethoxysilane (AAPTMS) and dispersed in water at primary particle size level under basic condition (pH 13-14). The aqueous ZrO2 nanoparticle dispersion was cast on a polycarbonate substrate with 1,4-butanediol digylcidyl ether as a cross-linker. Nanoparticle films with as high as 81 wt.% of ZrO2 were obtained through heating the cast dispersion at 120 °C, which are highly transparent. The refractive index ranges from 1.70 to 1.77 at wavelength of 632 nm with the decrease of the amount of AAPTMS attached to ZrO2 nanoparticles. Nanoindentation tests show that the hardness of the film reaches 1.7 GPa. In addition, both punched tape abrasion and nanoscratch tests reveal that the films exhibit prominent scratch resistant performance.  相似文献   

20.
Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl3, SnCl4 and NH3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ~ 40-1160 nm. After calcination at 550 °C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号