首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a synthesis of magnetic nanoparticles of samarium cobalt alloys and the use of iron oxide as a coating layer to prevent the rapid oxidation of as-made Sm-Co nanoparticles. The colloidal nanoparticles of Sm-Co alloys were made in octyl ether using samarium acetylacetonate and dicobalt octacarbonyl as precursors in a mixture of 1,2-hexadecanediol, oleic acid, and trioctylphosphine oxide (TOPO). Such Sm-Co nanoparticle could be readily oxidized by air and formed a CoO antiferromagnetic layer. Exchange biasing was observed for the surface oxidized nanoparticles. In situ thermal decomposition of iron pentacarbonyl was used to create iron oxide shells on the Sm-Co nanoparticles. The iron oxide shell could prevent Sm-Co nanoparticles from rapid oxidation upon the exposure to air at ambient conditions.  相似文献   

2.
Sun X  Huls NF  Sigdel A  Sun S 《Nano letters》2012,12(1):246-251
Monodisperse 35 nm FeO nanoparticles (NPs) were synthesized and oxidized in a dry air atmosphere into core/shell FeO/Fe(3)O(4) NPs with both FeO core and Fe(3)O(4) shell dimensions controlled by reaction temperature and time. Temperature-dependent magnetic properties were studied on FeO/Fe(3)O(4) NPs obtained from the FeO NPs oxidized at 60 and 100 °C for 30 min. A large exchange bias (shift in the hysteresis loop) was observed in these core/shell NPs. The relative dimensions of the core and shell determine not only the coercivity and exchange field but also the dominant reversal mechanism of the ferrimagnetic Fe(3)O(4) component. This is the first time demonstration of tuning exchange bias and of controlling asymmetric magnetization reversal in FeO/Fe(3)O(4) NPs with antiferromagnetic core and ferrimagnetic shell.  相似文献   

3.
A photokilling approach for pathogenic bacteria is demonstrated using a new type of magnetic nanoprobe as the photokilling agent. In addition to their magnetic property, the nanoprobes have other features including a photocatalytic property and the capacity to target bacteria. The nanoprobes comprise iron oxide/titania (Fe(3)O(4)@TiO(2)) core/shell magnetic nanoparticles. As dopamine molecules can self-assemble onto the surface of the titania substrate, dopamine is used as the linker to immobilize succinic anhydride onto the surfaces of the Fe(3)O(4)@TiO(2) nanoparticles. This is followed by the immobilization of IgG via amide bonding. We demonstrate that the IgG-Fe(3)O(4)@TiO(2) magnetic nanoparticles not only have the capacity to target several pathogenic bacteria, but they also can effectively inhibit the cell growth of the bacteria targeted by the nanoparticles under irradiation of a low-power UV lamp within a short period. Staphylococcus saprophyticus, Streptococcus pyogenes, and antibiotic-resistant bacterial strains, such as multiantibiotic-resistant S. pyogenes and methicillin-resistant Staphylococcus aureus (MRSA), are used to demonstrate the feasibility of this approach.  相似文献   

4.
5.
The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.  相似文献   

6.
A simple route has been designed for the syntheses of a kind of electrocatalyst, i.e., hollow spheres with Au and excessive Pt nanoparticles in core and silica as shell. The Au@carbon spheres synthesized by hydrothermal process can act as the transitional templates, and the carbonaceous matrix can in situ reduce H2PtCl6·H2O solution and load with Pt nanoparticles, and then a slightly modified Stöber process was applied to encapsulate the structures with silica shell. Further calcination at high temperatures removed the carbon matrix to form the hollow spheres with Au and excessive Pt nanoparticles in core and silica as shell. This new kind of structures shows excellent electrocatalytic properties compared with that of similar hollow spheres but only with pure Pt nanoparticles inside, and it might provide an efficient way to improve the electrocatalytic property of a bulk Pt/GC electrode.  相似文献   

7.
Fe3O4 magnetic nanoparticles (MNPs) were synthesized by a co-precipitation method. The phase purity was confirmed by X-ray powder diffraction (XRD) analysis. The crystal size was found to be 10 nm from transmission electron microscopy (TEM). It is evidenced that the surface of Fe3O4 MNPs was modified by sodium citrate. The Fe3O4/ZnO core/shell MNPs were obtained by coating the MNPs with direct precipitation using zinc acetate and ammonium carbonate. The precursor was firstly dried and then calcined at 350 °C. The antioxidation tests indicated that the core/shell MNPs give better antioxidation than that of the Fe3O4 MNPs. The photocatalytic degradation of methyl orange revealed that the core/shell MNPs have higher photocatalytic activity than that of the ZnO nanoparticles. Separation of the core/shell MNPs from the aqueous suspension using a magnet provides an easy way to recycle the core/shell MNPs. After four-time recycling, the photocatalytic degradation percentage of the core/shell MNPs is about 70%.  相似文献   

8.
在近球形α-Fe2O3颗粒的悬浮液中,以正硅酸乙酯(TEOS)为硅源,氨水和尿素为催化剂,合成了Fe2O3-SiO2核-壳粒子.应用TEM.XRD对Fe2O3-SiO2核-壳粒子结构进行了测定.研究了TEOS.氨水的浓度对核-壳粒子结构的影响.UV-Vis吸收光谱表明,SiO2壳层消除了Fe2O3纳米粒子的表面悬挂键,产生增强的激子发射,使得核-壳粒子的吸收峰发生蓝移.根据带边吸收峰的波长计算出核-壳粒子中Fe2O3的禁带宽度为2.25 eV.  相似文献   

9.
10.
Quantum dots (QD) of a CdSe-ZnS core-shell structure are coated with silica spheres to improve their stability in biological buffers and biocompatibility in fluorescence imaging. We found that it was critical to transfer quantum dots from organic phase to aqueous phase before the silica shell growth process. As a result, high quality CdSe-ZnS-SiO2 core-shell-shell nanoparticles were prepared in high yields and their size and distribution are characterized with transmission electron microscopy and dynamic light scattering, which yielded uniform sizes and narrow polydispersity. Single particle fluorescence spectroscopy on the silica-protected quantum dots showed they were stronger emitters with consistent fluorescence intensity and "on-off" behaviors than bare CdSe-ZnS nanocrystals.  相似文献   

11.
Facile methods for the selective preparation of capped iron oxide nanoparticles (γ-Fe2O3, Fe3O4) are described. The magnetic oxides are obtained via oxidative transformation of an iron hydroxide gel using H2O2 or (NH4)2S2O8 solutions as oxidants. Capping with oleic or other aliphatic acids is established simultaneously in one step by adding a toluene solution of the capping agent and refluxing the resulting biphase system. The method is simple, soft and affords nanoparticles of γ-Fe2O3 or Fe3O4 of controlled size depending on the reaction conditions. The capped nanoparticles are readily soluble in organic or aqueous media according to the nature of the sheath surrounding the surface of the particles, providing stable and high concentration ferrofluids.  相似文献   

12.
The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10 mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles.  相似文献   

13.
14.
Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe2O3 nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 μg.ml−1 concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic‐diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti‐cancer drug doxorubicin.  相似文献   

15.
利用酸催化的溶胶-凝胶法合成了一系列不同掺杂量的Fe3 /TiO2、Cr3 /TiO2纳米复合微粒.用XRD和TEM研究了Fe3 、Cr3 的掺杂对TiO2纳米粒子尺寸和相结构的影响.结果表明:掺杂离子不同,对TiO2纳米粒子尺寸和相结构的影响不同.在所研究的掺杂量范围内(x:0.0000~0.1000),TiO2纳米粒子的粒径随Cr3 掺杂量的增加呈减小的趋势,但幅度不大;而Fe3 的掺杂则会引起TiO2粒子的团聚和晶粒的长大;由XRD分析可知:在掺杂量范围内,不会发生Fe2O3、Cr2O3等相的偏析,但Fe3 的掺杂引起了TiO2在低温条件下由锐钛矿向金红石的相转变.通过UV-Vis光谱的研究发现:Fe3 、Cr3 的加入,可以使TiO2对光的吸收拓展到可见区,同时随着掺杂量的增加,对可见光的吸收强度显著增强.  相似文献   

16.
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.  相似文献   

17.
We report the synthesis of high magnetic moment CoFe nanoparticles via the diffusion of Co and Fe in core/shell structured Co/Fe nanoparticles. In an organic solution, Co nanoparticles were coated with a layer of Fe to form a Co/Fe core/shell structure. Further raising the solution temperature led to inter-diffusion of Co and Fe and formation of CoFe alloy nanoparticles. These nanoparticles have high saturation magnetization of up to 192 emu/g CoFe and can be further stabilized by thermal annealing at 600 °C. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. These two authors made an equal contribution to the work.  相似文献   

18.
Carbon xerogels synthesized from polycondensation of resorcinol with formaldehyde, having specific surface areas in the range 650 to 990 m2 g−1 and variable degrees of surface oxidation, are used to prepare TiO2-carbon xerogel composites by sol-gel methods. These composite materials are used to support Pt nanoparticles (5 wt.%) by the photodeposition technique. After a high temperature reduction treatment at 773 K, the obtained materials were characterized in order to assess the interactions between the phases Pt, TiO2 and carbon xerogel. It is observed that the carbon xerogel acts as an adhesive agent of the TiO2 and Pt particles, enhancing the interaction between the metal and the composite support.  相似文献   

19.
MgB2 thin films were fabricated on r-plane Al2O3 ( ${1} \overline{{1}} {0} {2})$ substrates. First, deposition of boron was performed by rf magnetron sputtering on Al2O3 substrates and followed by a post-deposition annealing at 850 °C in magnesium vapour. In order to investigate the effect of Fe2O3 nanoparticles on the structural and magnetic properties of films, MgB2 films were coated with different concentrations of Fe2O3 nanoparticles by spin coating process. The magnetic field dependence of the critical current density J c was calculated from the M–H loops and magnetic field dependence of the pinning force density, f p(b), was investigated for the films containing different concentrations of Fe2O3 nanoparticles. The critical current densities, J c, in 3T magnetic field at 5 K were found to be around 2·7 × 104 A/cm2, 4·3 × 104 A/cm2, 1·3 × 105 A/cm2 and 5·2 × 104 A/cm2 for films with concentrations of 0, 25, 50 and 100% Fe2O3, respectively. It was found that the films coated with Fe2O3 nanoparticles have significantly enhanced the critical current density. It can be noted that especially the films coated by Fe2O3 became stronger in the magnetic field and at higher temperatures. It was believed that coated films indicated the presence of artificial pinning centres created by Fe2O3 nanoparticles. The results of AFM indicate that surface roughness of the films significantly decreased with increase in concentration of coating material.  相似文献   

20.
HTaWO6/(Pt,TiO2) and HTaWO6/(Pt,Fe2O3) nanocomposites were synthesized by successive intercalation reactions of HTaWO6 with [Pt(NH3)4]Cl2 aqueous solution, n-C3H7NH2/n-heptane mixed solution and acidic TiO2 colloid solution or [Fe3(CH3CO2)7(OH)(H2O)2]NO3 aqueous solution followed by UV light irradiation. The gallery heights of HTaWO6/(Pt,TiO2), HTaWO6/TiO2, HTaWO6/(Pt,Fe2O3) and HTaWO6/Fe2O3 was less than 0.51 nm. The host HTaWO6 was white possessing band gap energy of 3.1 eV, whereas HTaWO6/Pt, HTaWO6/(Pt,TiO2), HTaWO6/Fe2O3 and HTaWO6/(Pt,Fe2O3) were yellow and showed broad reflection over 400–600 nm together with that corresponding to the host layer. Photocatalytic activities of HTaWO6/TiO2 and HTaWO6/Fe2O3 were superior to those of unsupported TiO2 and Fe2O3 and were greatly enhanced by co-incorporation of Pt. HTaWO6/Pt, HTaWO6/(Pt,TiO2), HTaWO6/Fe2O3 and HTaWO6/(Pt,Fe2O3) showed photocatalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号