首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this work, stem of common reed ash (SCRA) is introduced as a new source of silica in the preparation of mesoporous materials. Mesoporous silicate MCM-41 nanoparticles were synthesized hydrothermally using sodium silicate prepared from SCRA as a silica source. The characterization of MCM-41was carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N\(_{2}\) adsorption/desorption (BET) and transmission electron microscopy (TEM). SEM shows that MCM-41 nanoparticles are sphere-like with size in the range of 30–50 nm with some degree of agglomeration. TEM image of the synthesized sample shows the open framework structure of MCM-41. A type IV isotherm can be observed from adsorption/desorption curves, which is the characteristic of mesoporous materials. The prepared MCM-41 nanoparticles were used as substrate to facilitate the oxidation of methanol through the modification with an electroactive species. The modification was achieved by impregnation of MCM-41 pores with \(\hbox {Ni}^{2+}\) ions (Ni-doped MCM-41). A modified carbon paste electrode (CPE) was prepared by mixing Ni-doped MCM-41 with carbon paste (NiMCM-41CPE). Cyclic voltammetry of NiMCM-41CPE shows an increment in current density of methanol oxidation in comparison with CPE in alkaline solution. Moreover, a decrease in the overpotential of methanol oxidation occurred on the surface of modified electrode. The effects of some parameters such as scan rate and methanol concentration are also investigated on the behaviour of NiMCM-41CPE. Also, the heterogeneous electron transfer rate for the catalytic reaction (k) of methanol is calculated.  相似文献   

2.
硝基苯法合成RT培司(4-氨基二苯胺)的废水色度高、组分复杂、催化剂四甲基氢氧化铵(TMAOH)难以分离回收。提出采用磁性MCM-41对RT培司废水中有机副产物进行选择性吸附分离。制备的磁性MCM-41样品采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、N2吸附-脱附和振动样品磁场计(VSM) 等手段进行表征。结果表明, 磁性MCM-41颗粒的粒径范围为200~300 nm, BET比表面积约为655.2 m2/g, 孔径分布为0.5~4 nm, 内核铁酸镍的存在使磁性MCM-41具有超顺磁性。吸附研究表明磁性MCM-41对RT培司废水中吩嗪、偶氮苯和苯胺等有机物具有良好吸附作用, 经5次吸附磁分离后, RT培司废水中四甲基氢氧化铵能够达到回用要求, 吸附后的磁性MCM-41在外加磁场下极易分离。  相似文献   

3.
In this work, new polyacrolein/MCM-41 nanocomposites with good phase mixing behavior were prepared through an emulsion polymerization technique. Mesoporous silica was synthesized by in situ assembly of tetraethyl orthosilicate (TEOS) and cetyl trimethyl ammonium bromide (CTAB). The structure and properties of polyacrolein containing nanosized MCM-41 particle (5 and 10 wt%), were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, Dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption techniques, and thermogravimetric (TGA) analyses. The SEM images from the final powder have revealed good dispersion of the MCM-41 nanoparticles throughout polymeric matrix with no distinct voids between two phases. The results indicated that the thermal properties of the nanocomposite were enhanced by addition of MCM-41. Thermomyces lanuginosa lipase (TLL) was used as a model biocatalyst and successfully immobilized with polyacrolein and the nanocomposite via covalent bonds with the aldehyde groups. The activity between free enzyme, polyacrolein, and MCM-41 nanocomposite (10 wt%)-immobilized TLL was compared. The immobilized lipase with the nanocomposite shows better operational stability such as pH tolerance, thermal and storage stability. In addition, the immobilized lipase with the nanocomposite can be easily recovered and retained at 74% of its initial activity after 15 time reuses.  相似文献   

4.
通过水热合成法制备MCM-41型介孔分子筛,采用浸渍法负载磷钨酸于MCM-41介孔分子筛中,煅烧得到新型HPW/MCM-41固载催化剂。利用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TG)和扫描电镜(SEM)对固载催化剂进行表征;考察催化剂对棉纤维催化降解反应的性能。结果表明,新型HPW/MCM-41固载催化剂即持有了磷钨酸的Keggin结构,同时又保持了分子筛的完整介孔结构,具有催化、筛分双重性能。棉纤维催化降解反应数据显示,磷钨酸负载量、反应温度、催化剂用量、液固比及停留时间均影响HPW/MCM-41降解纤维素的性能。在单因素实验最佳反应条件下,棉纤维素降解产物的分子量分布较为均匀,降解产物的产率较优。  相似文献   

5.
制备了MCM-41负载戊二酸锌催化剂(ZnGA/MCM-41),并采用热重分析、红外光谱和X射线衍射对催化剂进行了表征。结果表明,ZnGA与载体间存在相互作用,ZnGA能以更小的粒径均匀分散到MCM-41的表面。实验研究表明,该催化剂对于CO2与环氧丙烷(PO)共聚反应显示出较高的催化效率,并得到高分子量的聚碳酸亚丙酯(PPC);通过调节负载量和催化剂的用量,最高催化效率达到了89.5g聚合物/g ZnGA;共聚产物的红外光谱和核磁数据表明,所得共聚产物具有接近完全交替(>97.4%)的碳酸酯结构。  相似文献   

6.
In this paper, SnO2 nanoparticles were synthesized by the impregnation method with SnCl2 x 2H2O as the inorganic precursor and mesoporous silica MCM-41 as the hard template. The physical and chemical properties of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The SnO2 nanoparticles grew into the ordered channels of MCM-41. After removing the silica template, the products exhibited good rutile structure. The gas sensing properties of the SnO2 nanoparticles were also studied. The results indicated that these SnO2 nanoparticle sensors showed high selectivity towards ethanol.  相似文献   

7.
MCM-41 填加量与偶联修饰对复合材料拉伸性能的影响   总被引:10,自引:2,他引:8       下载免费PDF全文
通过溶液共混法制备出MCM-41/ 环氧树脂、偶联修饰MCM-41/ 环氧树脂纳米复合材料。研究了填充MCM-41 介孔分子筛颗粒的偶联修饰以及不同的填充颗粒含量对分散性和复合材料拉伸性能的影响。结果表明: 在MCM-41/ 环氧树脂纳米复合材料中, MCM-41 仍保持着长程有序的孔道结构。修饰后的MCM-41 变成亲油性, 有利于增强颗粒与环氧树脂间的界面结合和纳米网络结构的形成, 使MCM-41 颗粒更能均匀分散在聚合物基体中, 提高复合材料的拉伸性能。修饰后的MCM-41 填加量为2.5 %(质量分数) 时, 拉伸强度达到最大值,比基体树脂提高99.2 % , 杨氏模量提高了110 %。   相似文献   

8.
Liu L  Li B  Ying J  Wu X  Zhao H  Ren X  Zhu D  Su Z 《Nanotechnology》2008,19(49):495709
Magnetic Fe(2)O(3) nanoparticles coated with SiO(2) chemically doped with a Ru(II) complex were prepared using a simple solution based method. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) showed that the Fe(2)O(3) nanoparticles with a mean diameter of ~115?nm were successfully coated with Ru(II) complex-chemically doped SiO(2) shell with a thickness of ~30?nm. The obtained nanocomposite material showed a strong magnetic response to a varying magnetic field, exhibited the bright red triplet metal-to-ligand charge transfer ((3)MLCT) emission, and its photoluminescent intensity was sensitive to oxygen concentration. Compared with the Ru(II) complex in silica gels, the Ru(II) complex in the magnetic-optical-oxygen-sensing nanocomposite demonstrated improved thermodynamic stability of emissions. These nanocomposites are also nontoxic and easily conjugated with biomolecules. Their magnetic, photoluminescent and oxygen-sensing properties make them promising candidates for cell separation, biomarkers and optical oxygen sensors, which can measure the O(2) concentration in biological bodies.  相似文献   

9.
In this work, a colloidal suspension of trioctyl phosphine oxide/trioctyl phosphine (TOPO/TOP)-capped CdSe QD's of size ∼5 nm was prepared by chemical route and these QD's were anchored on the surface of sol-gel prepared nanoporous TiO2 layers in THF-ethanol solvent either by direct adsorption or with the aid of bi-functional linker molecule mercaptoacetic acid (MPA). The particle size estimation of both TiO2 and CdSe nanoparticles by X-ray diffraction (XRD) and transmission electron microscopic (TEM) measurements concur well with each other. Energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) studies elucidate the signatures of TiO2, CdSe nanoparticles and linker which is also supported by the presence of contrasting images in TEM studies respectively. XPS depth-profiling measurements have been used as a probe to determine the chemical composition and structure of CdSe nanocrystals and CdSe-TiO2 nanocomposites respectively. The CdSe nanoparticles and CdSe-TiO2 nanocomposites formed by different routes are modeled, based on the observations of several complimentary techniques.  相似文献   

10.
Uniform and stable Ru nanoparticles were synthesized by reduction of RuCl3 in ethylene glycol (EG) in the presence of poly(N-vinyl-2-pyrrolidone) by using microwave-assisted solvothermal method. The obtained materials were characterized by UV-vis, FT-IR, XPS, XRD and TEM techniques, and used as precursors of heterogeneous metal colloid catalysts. Characterization by TEM showed that as-prepared PVP-stabilized Ru nanoparticles have small average diameters (below 2 nm) and narrow size distributions (1-3 nm). Diffraction data confirmed that a crystallite size is around 2.0 nm. A colloidal Ru/γ-Al2O3 catalyst was obtained by two different methods: immobilization of the PVP-stabilized Ru colloid on the support or by in situ deposition of Ru colloid, e.g., reduction of RuCl3 with EG in the presence of the γ-alumina. It was found that both synthesis methods produced the Ru/γ-Al2O3 catalysts with narrow size distributions of metallic nanoparticles, that are distributed uniformly over the support. However, only in situ preparation of the colloidal Ru/γ-Al2O3 catalyst results in chlorine free system with high activity for hydrogen chemisorption. The H2 uptake on the Ru(PVP)/γ-Al2O3 catalyst was very low because the ruthenium surface was strongly occluded with a thin layer of polymer molecules.  相似文献   

11.
Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 °C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption–desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g−1. An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.  相似文献   

12.
PC50%/PS50% polymer blend nanocomposites, undoped and doped with different concentration of ZnO nanoparticles (1, 2, 3 wt%), have been prepared using solution casting method. Structural and optical studies have been performed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Ultraviolet–Visible spectroscopy (UV–Vis). ZnO nanoparticles have been synthesized by chemical route method. The nanostructure of the ZnO nanoparticles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical Absorption Spectra has been used to study optical constants of prepared blend nanocomposites. Energy band gap of PC/PS – ZnO blend nanocomposites have been calculated by using Tauc relation. The band gap of the nanocomposites decreases as ZnO wt% increases. Extinction coefficient, refractive index and real & imaginary part of dielectric constants increase with increase in ZnO nanoparticles wt%.  相似文献   

13.
Highly dispersed tungsten oxide on MCM-41 was synthesized using a novel atomic layer deposition (ALD) method. BET, XRD, XPS, NH3-TPD, and pyridine-IR were used to study the physicochemical properties of the supported tungsten oxides. In this study, the maximum loading of tungsten oxide on MCM-41 that could be prepared using the modified ALD method was 27.0 wt%. It was confirmed that the textural properties of the mesoporous silica were maintained after tungsten oxide loading. The NH3-TPD and Py-IR results indicated that weak acid sites, mainly Lewis acid sites, were produced over the WO3/MCM-41 samples. Moreover, 2-butanol dehydration was performed to demonstrate the potential advantages of the WO3/MCM-41 catalysts. The WO3/MCM-41 catalyst with 27.0 wt% tungsten oxide loading showed the highest activity in the dehydration of 2-butanol, which was attributed to the highest overall number of acid sites among the WO3/MCM-41 catalysts. The highly dispersed tungsten oxide on MCM-41 prepared via ALD can be an effective catalyst for producing butenes through 2-butanol dehydration.  相似文献   

14.
A simple soft-chemical technique for processing of metal@SnO2 nanocomposites with core-shell morphology is reported. In the present technique metal nanoparticles are prepared by chemical reduction technique followed by deposition of tin dioxide. Thus a core-shell type structure is produced. The phase and morphology has been investigated by X-ray diffraction technique (XRD) and transmission electron microscopy (TEM). As prepared Au@SnO2 and Ag@SnO2 core-shell nanocomposites have shown distinct surface Plasmon band in the UV-visible spectrum at 540 nm and 400 nm respectively. The core-shell morphology is confirmed from the TEM images. XRD patterns have suggested the presence of noble metal and tin dioxide in the Cassiterite form. These metal@SnO2 nanocomposites have been successfully used for the photocatalytic oxidation of acetaldehyde. Our investigations suggest that presence of noble metal core in contact with tin dioxide shell enhances the photocatalytic activity of the material.  相似文献   

15.
Mesoporous nanospheres of germania were used as matrix to grow CoPt nanoparticles. The host germania nanospheres were prepared by biomineralization via the recognition of the peptide sequence T-G-H-Q-S-P-G-A-Y-A-A-H. The size of the cobalt/platinum nanoparticles embedded in germania is in the 8-9 nm range, as determined by TEM analysis. The porosity of the nanocomposites was confirmed by nitrogen isotherm analysis. MFM analysis confirmed the magnetic properties of the germania nanocomposites. This simple method of preparation of germania nanospheres via biomineralization, followed by growth of CoPt nanoparticles has an attractive potential for preparing new optomagnetic materials. Such nanocomposites for various device fabrications can be produced and potentially be used to target specific applications.  相似文献   

16.
In this work, a route for the synthesis of inorganic/polymer core/shell composite nanoparticles was proposed, which can be called the antisolvent-ultrasound method. Compressed CO2 was used as antisolvent to precipitate the polymer from its solution dispersed with inorganic nanoparticles, during which ultrasonic irradiation was used to induce the coating of precipitated polymers on the surfaces of the inorganic nanoparticles. TiO2/polystyrene (PS) core/shell nanocomposites have been successfully prepared using this method. The transmission electronic micrographs (TEM) of the obtained nanocomposites show that the TiO2 nanoparticles are coated by the PS shells, of which the thickness can be tuned by the pressure of CO2. The phase structure, absorption properties, and thermal stability of the composite were characterized by X-ray diffraction (XRD), UV-vis spectra, and thermogravimetry, respectively. The results of X-ray photoelectron spectra (XPS) indicate the formation of a strong interaction between PS and TiO2 nanoparticles in the resultant products. This method has some potential advantages for applications and may be easily applied to the preparation of a range of inorganic/polymer core/shell composite nanoparticles.  相似文献   

17.
采用非平衡物理气相蒸发法在氢气氩气混合气氛下制备了氧化硅包覆铁“壳/核”型纳米复合粒子. 通过X射线衍射(XRD)、透射电子显微镜(TEM)和能谱分析(EDS)等方法表征了纳米复合粒子的相组分、结构以及颗粒形貌. 结果表明,制备的氧化硅包覆铁纳米复合粒子的尺寸在50nm左右,在铁纳米粒子的表面还出现了非晶态的氧化硅纳米棒,长度为150~200nm. 利用电磁参数模拟微波吸收特性得出,涂层厚度为1.79mm时,在15.4GHz频率处达到最小反射损耗值为-14.5dB,反射损耗在8~18GHz的频段低于-10dB,且损耗机制为自然共振.  相似文献   

18.
This paper presents the effect of different types of additives on the morphology and mechanical performance of polypropylene (PP). Three different types of nanoparticles, containing mesoporous silica (MCM-41), Hydroxyapatite (HA) and the composite of MCM-41 and HA (MH) were used. Nanocomposites containing PP, 3 wt.% of maleic anhydride grafted polypropylene (PP-g-MA) and 3 wt.% of different nanoparticles were prepared using the melt-compounding technique in a twin-screw extruder. The bulk mechanical response of the nanocomposites such as tensile, flexural and Izod impact properties were studied. The results of mechanical tests show that at the same nanomaterial content, all the nanofillers cause better tensile, flexural and impact strength than neat PP. The MH nanoparticle improves the mechanical properties of PP, better than the other nanoparticles because this nanofiller contains good properties of both MCM-41 and HA nanoparticles in itself. In order to investigate the effect of foam agent on the mechanical properties of neat PP and nanocomposites based on PP, inorganic azodicarboxamide was added to the aforementioned mixtures as chemical blowing agent and the foamed specimens were resulted using the melt-compounding technique. The results reveal that addition of foam agent to mixtures, leads to increase the flexural characteristics of samples, but the tensile properties and impact strength decrease. Scanning electron microscopy (SEM) was used to assess the fracture surface morphology and the dispersion of the nanoparticles. X ray diffractometry (XRD) was used to examine the intercalation effect on the nanocomposites. The observations show that the nanomaterials were well dispersed in the polymer matrix and the enhancement of the interface between the matrix and fillers was obtained by the incorporation of MH, MCM-41 and HA nanoparticles into PP matrix.  相似文献   

19.
Fe-Ru bimetallic nanoparticles were prepared by a microwave irradiation assisted glycol reduction method using poly-N-vinyl-2-pyrrolidone (PVP) as protective agent. The structure and morphology of the nanoparticles were characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDXA) and high-resolution transmission electron microscopy (HRTEM). EDXA and XRD analysis confirmed the presence of Fe and Ru. The bimetallic nanoparticles were subsequently loaded onto an MgAl2O4 supporter with K2O as promoters and used as catalyst for water-gas shift reaction. The results indicated that the FeRu bimetallic nanoparticles exhibit high catalytic activity for water-gas shift reaction due to the synergistic effect between iron and ruthenium. Potassium oxide can enhance the CO selectivity of the catalyst significantly besides increasing the catalyst activity.  相似文献   

20.
Silver/polypropylene (PP) nanocomposites containing silver nanoparticles smaller than 10 nm were prepared using a new synthetic method. AgNO3 crystals were dissolved into hydrophilic domain of polyoxyethylene maleate-based surfactant (PEOM), which gives self-assembly nano-structures. The AgNO3 in the nano-domains of PEOM was reduced by NaBH4 to form nanoparticles. The colloidal solutions with silver nanoparticles were diluted with ethanol and were mixed with PP pellets. Silver nanocomposites were prepared by extrusion compounding process after drying the pellets. Contents of silver nanoparticles dispersed within PP resin were changed from 100 to 1000 ppm. Formation of silver nanoparticles within PP was confirmed by UV-Vis spectroscopy and TEM. Size and distribution of dispersed silver nanoparticles were also measured by TEM. Silver/PP nanocomposites films showed not only improved thermal stability but also increased mechanical properties compared to neat PP film. Tensile properties of PP nanocomposites were largely improved compared with neat PP resin, and elongation increased also by 175% for the nanocomposites containing 1000 ppm silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号