首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin (IL)-22 is a potent mediator of inflammatory responses. The IL-22 receptor consists of the IL-22Rα and IL-10Rβ subunits. Previous studies have shown that IL-22Rα expression is restricted to non-hematopoietic cells in the skin, pancreas, intestine, liver, lung, and kidney. Although IL-22 is involved in the development of inflammatory responses, there have been no reports of its role in brain inflammation. Here, we used RT-PCR, Western blotting, flow cytometry, immunohistochemical, and microarray analyses to examine the role of IL-22 and expression of IL-22Rα in the brain, using the microglial cell line, hippocampal neuronal cell line, and inflamed mouse brain tissue. Treatment of BV2 and HT22 cells with recombinant IL-22 increased the expression levels of the pro-inflammatory cytokines IL-6 and TNF-α, as well as cyclooxygenase (COX)-2 and prostaglandin E2. We also found that the JNK and STAT3 signaling pathways play an important role in IL-22-mediated increases in inflammatory mediators. Microarray analyses revealed upregulated expression of inflammation-related genes in IL-22-treated HT22 cells. Finally, we found that IL-22Rα is spontaneously expressed in the brain and is upregulated in inflamed mouse brain. Overall, our results demonstrate that interaction of IL-22 with IL-22Rα plays a role in the development of inflammatory responses in the brain.  相似文献   

2.
In search of new therapies for pancreatic cancer, cytokine pathways have attracted increasing interest in recent years. Cytokines play a vital role in the crosstalk between tumour cells and the tumour microenvironment. The related inflammatory cytokines IL-4 and IL-13 can regularly be detected at increased levels in the microenvironment of pancreatic cancer. They share a receptor heterodimer consisting of IL-4Rα and IL-13Rα1. While IL-4Rα induces a more oncogenic phenotype, the role of IL-13Rα1 was yet to be determined. ShRNA-based knockdown of IL-13Rα1 was performed in Capan-1 and MIA PaCa-2. We assessed cell growth and migratory capacities under the influence of IL-13Rα1. Pathway alterations were detected by immunoblot analysis. We now have demonstrated that the loss of IL-13Rα1 induces apoptosis in pancreatic cancer cells. This was associated with an epithelial-to-mesenchymal transition. Loss of IL-13Rα1 also abolished the effects of exogenous IL-4 and IL-13 stimulation. Interestingly, in wild type cells, cytokine stimulation caused a similar increase in migratory capacities as after IL-13Rα1 knockdown. Overall, our results indicate the vital role of IL-13Rα1 in the progression of pancreatic cancer. The differential expression of IL-4Rα and IL-13Rα1 has to be taken into account when considering a cytokine-targeted therapy in pancreatic cancer.  相似文献   

3.
The neuropathology of Alzheimer’s disease (AD) is characterized by intracellular aggregation of hyperphosphorylated tau and extracellular accumulation of beta-amyloid (Aβ). Death-associated protein kinase 1 (DAPK1), as a novel therapeutic target, shows promise for the treatment of human AD, but the regulatory mechanisms of DAPK1 expression in AD remain unclear. In this study, we identified miR-143-3p as a promising candidate for targeting DAPK1. miR-143-3p directly bound to the 3′ untranslated region of human DAPK1 mRNA and inhibited its translation. miR-143-3p decreased tau phosphorylation and promoted neurite outgrowth and microtubule assembly. Moreover, miR-143-3p attenuated amyloid precursor protein (APP) phosphorylation and reduced the generation of Aβ40 and Aβ42. Furthermore, restoring DAPK1 expression with miR-143-3p antagonized the effects of miR-143-3p in attenuating tau hyperphosphorylation and Aβ production. In addition, the miR-143-3p levels were downregulated and correlated inversely with the expression of DAPK1 in the hippocampus of AD patients. Our results suggest that miR-143-3p might play critical roles in regulating both aberrant tau phosphorylation and amyloidogenic processing of APP by targeting DAPK1 and thus offer a potential novel therapeutic strategy for AD.  相似文献   

4.
miR-155 plays a crucial role in proinflammatory activation. This study was carried out to assess the association of abnormal expression of miR-155 in peripheral blood of patients with Rheumatoid arthritis with the expression of TNF-α and IL-1β. Release of TNF-α and IL-1β, and expression of miR-155 were determined in RA peripheral blood or peripheral blood macrophages, followed by correlation analysis of the cytokines release and miR-155 expression. Furthermore, in vitro studies indicate that miR-155 inhibited the expression of SOCS1. Our results suggest that there is a correlation between the high-level expression of miR-155 and the enhanced expression of TNF-α and IL-1β. miR-155 targets and suppresses the expression of SOCS1, and the decrease of SOCS1 may lead to the upregulation of TNF-α and IL-1β.  相似文献   

5.
Fever is an important part of inflammatory response to infection. Although brown adipose tissue (BAT) thermogenesis is known to be potently influenced by systemic inflammation, the role of BAT during infection-induced fever remains largely unknown. Here, we injected mice with a low dose of LPS and found that low-dose LPS can directly induce thermogenesis of brown adipocytes. It is known that miR-143 is highly expressed in the BAT, and miR-143 knockout mice exhibited stronger thermogenesis under cold exposure. Interestingly, miR-143 was negatively correlated with an LPS-induced increase of TNFα and IL-6 mRNA levels, and the IL-6 pathway may mediate the inhibition of miR-143 expression. Moreover, miR-143 is down-regulated by LPS, and overexpression of miR-143 in brown adipocytes by lentivirus could rescue the enhancement of UCP1 protein expression caused by LPS, hinting miR-143 may be an important regulator of the thermogenesis in brown adipocytes. More importantly, the knockout of miR-143 further enhanced the LPS-induced increase of body temperature and BAT thermogenesis, and this result was further confirmed by in vitro experiments by using primary brown adipocytes. Mechanistically, adenylate cyclase 9 (AC9) is a new target gene of miR-143 and LPS increases BAT thermogenesis by a way of inhibiting miR-143 expression, a negative regulator for AC9. Our study considerably improves our collective understanding of the important function of miR-143 in inflammatory BAT thermogenesis.  相似文献   

6.
Low Protein Kinase C zeta (PKCζ) levels in cord blood T cells (CBTC) have been shown to correlate with the development of allergic sensitization in childhood. However, little is known about the mechanisms responsible. We have examined the relationship between the expression of different levels of PKCζ in CBTC and their development into mature T cell cytokine producers that relate to allergy or anti-allergy promoting cells. Maturation of naïve CBTC was initiated with anti-CD3/-CD28 antibodies and recombinant human interleukin-2 (rhIL-2). To stimulate lymphocyte proliferation and cytokine production the cells were treated with Phytohaemagglutinin (PHA) and Phorbol myristate acetate (PMA). Irrespective of the PKCζ levels expressed, immature CBTC showed no difference in lymphocyte proliferation and the production of T helper 2 (Th2) cytokine interleukin-4 (IL-4) and Th1 cytokine, interferon-gamma (IFN-γ), and influenced neither their maturation from CD45RA+ to CD45RO+ cells nor cell viability/apoptosis. However, upon maturation the low PKCζ expressing cells produced low levels of the Th1 cytokines, IFN-γ, IL-2 and tumour necrosis factor-alpha (TNF), no changes to levels of the Th2 cytokines, IL-4, IL-5 and IL-13, and an increase in the Th9 cytokine, IL-9. Other cytokines, lymphotoxin-α (LT-α), IL-10, IL-17, IL-21, IL-22 and Transforming growth factor-beta (TGF-β) were not significantly different. The findings support the view that low CBTC PKCζ levels relate to the increased risk of developing allergic diseases.  相似文献   

7.
Mast cells are tissue-resident immune cells that function in both innate and adaptive immunity through the release of both preformed granule-stored mediators, and newly generated proinflammatory mediators that contribute to the generation of both the early and late phases of the allergic inflammatory response. Although mast cells can be activated by a vast array of mediators to contribute to homeostasis and pathophysiology in diverse settings and contexts, in this review, we will focus on the canonical setting of IgE-mediated activation and allergic inflammation. IgE-dependent activation of mast cells occurs through the high affinity IgE receptor, FcεRI, which is a multimeric receptor complex that, once crosslinked by antigen, triggers a cascade of signaling to generate a robust response in mast cells. Here, we discuss FcεRI structure and function, and describe established and emerging roles of the β subunit of FcεRI (FcεRIβ) in regulating mast cell function and FcεRI trafficking and signaling. We discuss current approaches to target IgE and FcεRI signaling and emerging approaches that could target FcεRIβ specifically. We examine how alternative splicing of FcεRIβ alters protein function and how manipulation of splicing could be employed as a therapeutic approach. Targeting FcεRI directly and/or IgE binding to FcεRI are promising approaches to therapeutics for allergic inflammation. The characteristic role of FcεRIβ in both trafficking and signaling of the FcεRI receptor complex, the specificity to IgE-mediated activation pathways, and the preferential expression in mast cells and basophils, makes FcεRIβ an excellent, but challenging, candidate for therapeutic strategies in allergy and asthma, if targeting can be realized.  相似文献   

8.
An important member of the defensin family, β-defensin 2, is believed to play an important role in defense against foreign pathogens. In the present study, we constructed lentiviral vectors to express and knockdown β-defensin 2 in rat lungs. The results showed that the infection of β-defensin 2 overexpression lentivirus and β-defensin 2 shRNA effectively increased and suppressed the expression of β-defensin 2 in rat lung, respectively. The overexpression of β-defensin 2 mediated by the lentiviral vector protected lung from infection of Pseudomonas aeruginosa, but shRNA targeting β-defensin 2 aggregated the damage of lung. In addition, we also found that β-defensin 2 overexpression increased basal expression of anti-inflammatory cytokine such as IL-4, IL-10 and IL-13 and decreased levels of proinflammatory cytokines which include IL-1α, IL-1β, IL-5, IL-6, IL-8, IL-18, and TNF-α. Moreover, in the process of cytokine regulation, NF-κB pathway may be involved. Taken together, these data suggest that β-defensin 2 has protective effects against infection of Pseudomonas aeruginosa in rat and plays a role in inflammatory regulation by adjusting cytokine levels.  相似文献   

9.
We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7+hSMSC)-derived osteoblast-like (α7+hSMSC-OB) cells, and found that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-13-regulated proliferation of these cells. These data suggest that MMP-13 plays a potentially unique physiological role in the regeneration of osteoblast-like cells. Here, we examined whether up-regulation of MMP-13 activity by IL-1β was mediated by Wingless/int1 (Wnt) signaling and increased the proliferation of osteoblast-like cells. IL-1β increased the mRNA and protein levels of Wnt16 and the Wnt receptor Lrp5/Fzd2. Exogenous Wnt16 was found to increase MMP-13 mRNA, protein and activity, and interestingly, the proliferation rate of these cells. Treatment with small interfering RNAs against Wnt16 and Lrp5 suppressed the IL-1β-induced increase in cell proliferation. We revealed that a unique signaling cascade IL-1β→Wnt16→Lrp5→MMP-13, was intimately involved in the proliferation of osteoblast-like cells, and suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation are regulated by Wnt16.  相似文献   

10.
The high affinity immunoglobulin E (IgE) receptor-FcεR1 is mainly expressed on the surface of effector cells. Cross-linking of IgE Abs bound to FcεR1 by multi-valent antigens can induce the activation of these cells and the secretion of inflammatory mediators. Since FcεR1 plays a central role in the induction and maintenance of allergic responses, this study aimed to investigate the association of FcεR1 with the allergic phenotype of Cε expression and cytokine and histamine release from peripheral leukocytes. Peripheral leukocytes from 67 allergic and 50 non-allergic subjects were used for genotyping analysis. Peripheral mononuclear cells (PBMCs) were used for Cε expression and ELISpot analysis, while polymorphonuclear cells (PMNs) were used for histamine release. The association between genotype polymorphism of the FcεR1α promoter region (rs2427827 and rs2251746) and allergic features of Cε expression and histamine were analyzed, and their effects on leukocytes function were compared with wild type. The genotype polymorphisms of FcεR1α promoter region with CT and TT in rs2427827 and TC in rs2251746 were significantly higher in allergic patients than in non-allergic controls. Patients with single nucleotide polymorphism (SNP) of FcεR1α promoter region had high levels of total IgE, mite-specific Der p 2 (Group 2 allergen of Dermatophagoides pteronyssinus)-specific IgE and IgE secretion B cells. The mRNA expression of FcεR1α was significantly increased after Der p2 stimulation in PBMCs with SNPs of the FcεR1α promoter region. Despite the increased Cε mRNA expression in PBMCs and histamine release from PMNs and the up-regulated mRNA expression of interleukin (IL)-6 and IL-8 secretions after Der p2 stimulation, there was no statistically significant difference between SNPs of the FcεR1α promoter region and the wild type. SNPs of FcεR1α promoter region were associated with IgE expression, IgE producing B cells, and increased Der p2-induced FcεR1α mRNA expression. These SNPs may be used as a disease marker for IgE-mediated allergic inflammation caused by Dermatophagoides pteronyssinus.  相似文献   

11.
Tissue remodeling contributes to ongoing inflammation and refractoriness of chronic rhinosinusitis (CRS). During this process, epithelial-mesenchymal transition (EMT) plays an important role in dysregulated remodeling and both microRNA (miR)-29b and heat shock protein 47 (HSP47) may be engaged in the pathophysiology of CRS. This study aimed to determine the role of miR-29b and HSP47 in modulating transforming growth factor (TGF)-β1-induced EMT and migration in airway epithelial cells. Expression levels of miR-29b, HSP47, E-cadherin, α-smooth muscle actin (α-SMA), vimentin and fibronectin were assessed through real-time PCR, Western blotting, and immunofluorescence staining. Small interfering RNA (siRNA) targeted against miR-29b and HSP47 were transfected to regulate the expression of EMT-related markers. Cell migration was evaluated with wound scratch and transwell migration assay. miR-29b mimic significantly inhibited the expression of HSP47 and TGF-β1-induced EMT-related markers in A549 cells. However, the miR-29b inhibitor more greatly induced the expression of them. HSP47 knockout suppressed TGF-β1-induced EMT marker levels. Functional studies indicated that TGF-β1-induced EMT was regulated by miR-29b and HSP47 in A549 cells. These findings were further verified in primary nasal epithelial cells. miR-29b modulated TGF-β1-induced EMT-related markers and migration via HSP47 expression modulation in A549 and primary nasal epithelial cells. These results suggested the importance of miR-29b and HSP47 in pathologic tissue remodeling progression in CRS.  相似文献   

12.
Atopic dermatitis (AD) is a chronic inflammatory skin disease that can significantly affect daily life by causing sleep disturbance due to extreme itching. In addition, if the symptoms of AD are severe, it can cause mental disorders such as ADHD and suicidal ideation. Corticosteroid preparations used for general treatment have good effects, but their use is limited due to side effects. Therefore, it is essential to minimize the side effects and study effective treatment methods. Dendrobium nobile Lindley (DNL) has been widely used for various diseases, but to the best of our knowledge, its effect on AD has not yet been proven. In this study, the inhibitory effect of DNL on AD was confirmed in a DNCB-induced Balb/c mouse. In addition, the inhibitory efficacy of inflammatory cytokines in TNF-α/IFN-γ-induced HaCaT cells and PMACI-induced HMC-1 cells was confirmed. The results demonstrated that DNL decreased IgE, IL-6, IL-4, scratching behavior, SCORAD index, infiltration of mast cells and eosinophils and decreased the thickness of the skin. Additionally, DNL inhibited the expression of cytokines and inhibited the MAPK and NF-κB signaling pathways. This suggests that DNL inhibits cytokine expression, protein signaling pathway, and immune cells, thereby improving AD symptoms in mice.  相似文献   

13.
14.
Chaperone-mediated autophagy (CMA) is involved in wild-type α-synuclein degradation in Parkinson’s disease (PD), and LAMP2A and Hsc 70 have recently been indicated to be deregulated by microRNAs. To recognize the regularory role of miR-320a in CMA and the possible role in α-synuclein degradation, in the present study, we examined the targeting and regulating role of miR-320 in Hsc 70 expression. We first constructed an α-synuclein-overexpressed human neuroblastoma cell line, SH-SY5Y-Syn(+), stably over-expressing wild-type α-synuclein and sensitive to an autophagy inhibitor, which exerted no effect on the expression of LAMP2A and Hsc 70. Then we evaluated the influence on the CMA by miR-320a in the SH-SY5Y-Syn(+) cells. It was shown that miR-320a mimics transfection of specifically targeted Hsc 70 and reduced its expression at both mRNA and protein levels, however, the other key CMA molecule, LAMP2A was not regulated by miR-320a. Further, the reduced Hsc 70 attenuated the α-synuclein degradation in the SH-SY5Y-Syn(+) cells, and induced a significantly high level of α-synuclein accumulation. In conclusion, we demonstrate that miR-320a specifically targeted the 3'' UTR of Hsc 70, decreased Hsc 70 expression at both protein and mRNA levels in α-synuclein-over-expressed SH-SY5Y cells, and resulted in significant α-synuclein intracellular accumulation. These results imply that miR-320a might be implicated in the α-synuclein aggravation in PD.  相似文献   

15.
Objective: The present study aims to identify the differently expressed microRNA (miRNA) molecules and target genes of miRNA in the immune tolerance (IT) and immune activation (IA) stages of chronic hepatitis B (CHB). Methods: miRNA expression profiles of peripheral blood mononuclear cells (PBMCs) at the IT and IA stages of CHB were screened using miRNA microarrays and authenticated using a quantitative real-time polymerase chain reaction (RT-PCR). Gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the significant functions and pathways of possible target genes of miRNAs. Assays of the gain and loss of function of the miRNAs were performed to verify the target genes in THP-1 cell lines. The luciferase reporter test was used on 293T cells as direct targets. Results: Significantly upregulated miR-548 and miR-4804 were observed in the miRNA microarrays and confirmed by RT-PCR in PBMCs at the IT and IA stages of CHB. GO and KEGG analysis revealed that MiR-548 and miR-4804 could be involved in numerous signaling pathways and protein binding activity. IFNγR1 was predicted as a target gene and validated as the direct gene of MiR-548. Significant negative correlation was found between the miR-548ah and mRNA levels of IFN-γR1 in CHB patients. Conclusions: The abnormal expression profiles of miRNA in PBMCs could be closely associated with immune activation of chronic HBV infection. miR-548, by targeting IFN-γR1, may represent a mechanism that can facilitate viral pathogenesis and help determine new therapeutic molecular targets.  相似文献   

16.
Interleukin (IL)-4 and IL-13 are known as pleiotropic Th2 cytokines with a wide range of biological properties and functions especially in immune responses. In addition, increasing activities have also been determined in oncogenesis and tumor progression of several malignancies. It is now generally accepted that IL-4 and IL-13 can exert effects on epithelial tumor cells through corresponding receptors. Type II IL-4 receptor (IL-4Rα/IL-13Rα1), predominantly expressed in non-hematopoietic cells, is identified to be the main target for both IL-4 and IL-13 in tumors. Moreover, IL-13 can also signal by binding to the IL-13Rα2 receptor. Structural similarity due to the use of the same receptor complex generated in response to IL-4/IL-13 results in overlapping but also distinct signaling pathways and functions. The aim of this review was to summarize knowledge about IL-4 and IL-13 and their receptors in pancreatic cancer in order understand the implication of IL-4 and IL-13 and their receptors for pancreatic tumorigenesis and progression and for developing possible new diagnostic and therapeutic targets.  相似文献   

17.
Glioblastoma multiforme (GBM) is the most common lethal primary brain malignancy without reliable therapeutic drugs. IL-13Rα2 is frequently expressed in GBMs as a molecular marker. Resveratrol (Res) effectively inhibits GBM cell growth but has not been applied in vivo because of its low brain bioavailability when administered systemically. A sustained-release and GBM-targeting resveratrol form may overcome this therapeutic dilemma. To achieve this goal, encapsulated Res 30 ± 4.8 nm IL-13Rα2-targeting nanoparticles (Pep-PP@Res) were constructed. Ultraviolet spectrophotometry revealed prolonged Res release (about 25%) from Pep-PP@Res in 48 h and fluorescent confocal microscopy showed the prolonged intracellular Res retention time of Pep-PP@Res (>24 h) in comparison with that of free Res (<4 h) and PP@Res (<4 h). MTT and EdU cell proliferation assays showed stronger suppressive effects of Pep-PP@Res on rat C6 GBM cells than that of PP@Res (p = 0.024) and Res (p = 0.009) when used twice for 4 h/day. Pep-PP@Res had little toxic effect on normal rat brain cells. The in vivo anti-glioblastoma effects of Res can be distinctly improved in the form of Pep-PP@Res nanoparticles via activating JNK signaling, upregulating proapoptosis gene expression and, finally, resulting in extensive apoptosis. Pep-PP@Res with sustained release and GBM-targeting properties would be suitable for in vivo management of GBMs.  相似文献   

18.
The aim of this study is to explore the role of microRNAs (miR)-21/23a/146a/150/155 targeting the toll-like receptor pathway in active tuberculosis (TB) disease and latent TB infection (LTBI). Gene expression levels of the five miRs and predicted target genes were assessed in peripheral blood mononuclear cells from 46 patients with active pulmonary TB, 15 subjects with LTBI, and 17 non-infected healthy subjects (NIHS). THP-1 cell lines were transfected with miR-23a-3p mimics under stimuli with Mycobacterium TB-specific antigens. Both miR-155-5p and miR-150-5p gene expressions were decreased in the active TB group versus the NIHS group. Both miR-23a-3p and miR-146a-5p gene expressions were decreased in active TB patients with high bacterial burden versus those with low bacterial burden or control group (LTBI + NIHS). TLR2, TLR4, and interleukin (IL)10 gene expressions were all increased in active TB versus NIHS group. MiR-23a-3p mimic transfection reversed ESAT6-induced reduction of reactive oxygen species generation, and augmented ESAT6-induced late apoptosis and phagocytosis, in association with down-regulations of the predicted target genes, including tumor necrosis factor (TNF)-α, TLR4, TLR2, IL6, IL10, Notch1, IL6R, BCL2, TGF-β1, SP1, and IRF1. In conclusion, the down-regulation of miR-23a-3p in active TB patients with high bacterial burden inhibited mononuclear cell function and phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 signaling via targeting IRF1/SP1.  相似文献   

19.
Background: mast cells play an important role in airway inflammation in asthma. The transient receptor potential melastatin-like 7 (TRPM7) channel is expressed in primary human lung mast cells and plays a critical role for cell survival. This study aimed to investigate the role of TRPM7 on degranulation and release of cytokines in rat bone marrow-derived mast cells (BMMCs). Methods: the expression levels of TRPM7 were observed by immunocytochemistry and RT-PCR between normal and asthmatic rat BMMCs. TRPM7-specific shRNA and 2-aminoethoxydiphenyl borate (2-APB) and specific shTRPM7 were used to inhibit the function of TRPM7. Degranulation levels were analyzed by beta-hexosaminidase assay. Histamine, TNF-α, IL-6 and IL-13 levels were measured by ELISA. Results: the expression of TRPM7 was significantly higher in asthmatic rat BMMCs than in the normal control group. After application of 2-APB and down-regulation of TRPM7, the beta-hexosaminidase activity and secretion of histamine, IL-6, IL-13 and TNF-α were significantly decreased in the asthmatic group compared to the control group. Conclusion: this study indicates that TRPM7 channels may be involved in the process of degranulation and release of cytokines in rat bone marrow-derived mast cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号