首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entanglement generation due to low-energy scattering of the transporting electrons in an electronic waveguide by a quantum dot magnetic impurity is theoretically investigated. The transverse confining potential of the waveguide is considered as a two-dimensional harmonic potential, and the interaction of the electron with the impurity is described by a zero-range pseudopotential modulated by an Ising or a Heisenberg spin interaction. Our calculation shows that the scattering process leads to creation of a considerable amount of entanglement in the state of the reflected and transmitted electrons. The situation is extended to the scattering of the electrons by two well-separated magnetic impurities localized on the nanowire axis. It is shown that the scattering process causes the magnetic impurities embedded in the nanowire to share their quantum information; subsequently, they can be entangled by spin interaction with the injected electron. The created entanglement between the impurities is calculated and discussed. It is shown that the exact three-dimensional problem can be approximated as a one-dimensional problem under certain circumstances. The approximate results are compared to exact calculations and discussed.  相似文献   

2.
Explicit controlled-NOT gate sequences between two qubits of different types are presented in view of applications for large-scale quantum computation. Here, the building blocks for such composite systems are qubits based on the electrostatically confined electronic spin in semiconductor quantum dots. For each system the effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in two different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and charge noise.  相似文献   

3.
本文主要回顾了石墨烯量子点的制备以及基于石墨烯量子点自旋和电荷量子比特操作的研究进展,由于石墨烯材料相对较轻的原子重量使其具有较小的自旋轨道相互作用,另外含有核自旋的碳同位素13C在自然界中的含量大约只占1%,这使得超精细相互作用(即核自旋和电子自旋相互作用)较弱,所以石墨烯比其他材料具有较长的自旋退相干时间,在量子计算和量子信息中有非常好的应用前景.本文计算了5种静电约束制备的石墨烯量子点:1)扶手型单层石墨烯纳米条带,2)单层石墨烯圆盘,3)双层石墨烯圆盘,4)ABC堆积型三层石墨烯圆盘,5)ABA堆积型三层石墨烯圆盘.石墨烯量子点中自旋比特应用的关键是破坏谷简并,在1)中,主要是利用边界条件破坏谷简并,而2)–5)中是利用外磁场破坏谷简并.文章进一步介绍了自旋轨道相互作用和超精细相互作用对石墨烯量子点中自旋操作的影响.  相似文献   

4.
We show that the entanglement between two distant magnetic impurities, generated via electron scattering, can be easily modulated by controlling the magnitude of an applied external electric field. We assume that the two magnetic impurities are fixed and located on an one-dimensional quantum wire. A ballistic electron moving through the wire is scattered off by both impurities, so the electron spin can be seen as a mediator between the spins of the impurities. Heisenberg operators are used to describe the interactions between electron and impurities spins. We use a wave guide formalism to model the ballistic electron wave function. Entanglement control is shown to be possible for three different protocols of entanglement detection. The effect of detection protocols on the entanglement extraction is discussed.  相似文献   

5.
We investigate the problem of dissipative tunneling across a randomly modulated barrier in the two-level approximation and within the quantum state diffusion approach. Introducing the Bloch sphere of all possible pure states of the system we analyse numerically the behaviour of stochastic quantum trajectories. If the barrier is static the coherent tunneling is suppressed by two types of diffusion; the state dependent one along the meridians of the sphere and the uniform one along its latitudes. The barrier fluctuations forced by dichotomic noise increases the first kind of diffusion. The strongest suppression of coherency occurs when the jump rate of the noise equals the amplitude of fluctuations. For large enough amplitudes we observe the decrease of the variance of two components of the Bloch vector, after the complete decay of their mean values.  相似文献   

6.
The effect of inter-dot separation in a double pyramidal vertically aligned quantum dot system is investigated using a finite difference technique. It was found that as the separation distance increased beyond a certain limit, 40 Å in this case, the lowest energy electron wave function was localised in the larger dot. When the dots were in close proximity the probability of the carrier existing in the smaller dot increased. The method used here was a finite difference approach which is widely applicable to many scenarios and provided quantitative results for these intuitive concepts.  相似文献   

7.
We describe a code which utilizes partial-wave amplitudes to calculate a variety of physical quantities studied in electron-atom scattering. For elastic scattering and excitation of atoms with arbitrary angular momenta in collisions with spin-polarized and unpolarized electrons, the program can calculate angle-integrated and angle-differential cross sections, the spin polarization of scattered electrons, the spin left-right (up-down) asymmetry, generalized STU parameters, and the statistical tensors of the final atomic state, which determine polarization and correlation parameters in radiative and nonradiative decays of these states. In addition, the program transforms partial-wave scattering amplitudes into a representation of projections of the angular momenta in the natural and collision coordinate frames, thereby providing the possibility for a user to conveniently calculate any observable not explicitly included in the code. The program can be used directly as a final module after running the Belfast R-matrix codes in the Breit-Pauli mode.  相似文献   

8.
Quantum dot hybrid qubits formed from three electrons in double quantum dots represent a promising compromise between high speed and simple fabrication for solid state implementations of single-qubit and two-qubits quantum logic ports. We derive the Schrieffer–Wolff effective Hamiltonian that describes in a simple and intuitive way the qubit by combining a Hubbard-like model with a projector operator method. As a result, the Hubbard-like Hamiltonian is transformed in an equivalent expression in terms of the exchange coupling interactions between pairs of electrons. The effective Hamiltonian is exploited to derive the dynamical behavior of the system and its eigenstates on the Bloch sphere to generate qubits operation for quantum logic ports. A realistic implementation in silicon and the coupling of the qubit with a detector are discussed.  相似文献   

9.
We implement, optimize, and validate the linear-scaling Kubo–Greenwood quantum transport simulation on graphics processing units by examining resonant scattering in graphene. We consider two practical representations of the Kubo–Greenwood formula: a Green–Kubo formula based on the velocity auto-correlation and an Einstein formula based on the mean square displacement. The code is fully implemented on graphics processing units with a speedup factor of up to 16 (using double-precision) relative to our CPU implementation. We compare the kernel polynomial method and the Fourier transform method for the approximation of the Dirac delta function and conclude that the former is more efficient. In the ballistic regime, the Einstein formula can produce the correct quantized conductance of one-dimensional graphene nanoribbons except for an overshoot near the band edges. In the diffusive regime, the Green–Kubo and the Einstein formalisms are demonstrated to be equivalent. A comparison of the length-dependence of the conductance in the localization regime obtained by the Einstein formula with that obtained by the non-equilibrium Green’s function method reveals the challenges in defining the length in the Kubo–Greenwood formalism at the strongly localized regime.  相似文献   

10.
The influence of noise and of Unruh effect on quantum Prisoners’ dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.  相似文献   

11.
Using the boundary element dual reciprocity method-multi-domain (DRM-MD) a bound electron states and corresponding wave functions in semiconductor quantum wires embedded in a matrix were considered. The single circular and rectangular as well as the two near circular quantum wires were analyzed. In the case of two coupled quantum wires the dependence of the resulting wave function and eigenenergies as a function of the distance between wires was calculated. The DRM-MD gave a linear electron state model and developed numerical approach accurately captured the symmetry breaking and splitting of the degenerated energy states due to presence of additional wire. According to the symmetry of the structures a suitable mesh reduction was employed and different modes were considered separately. For a case of hetero-structures domain decomposition was used.  相似文献   

12.
隧尖与阳极之间的可控间距是关系到隧道加速度传感器能否正常工作的一个重要参数,静电吸合限制了该可控间距的范围,本文从理论上分析了静电吸合对隧道加速度传感器设计的影响。对于质量块作活塞式运动的平动型隧道加速度传感器,只有当隧尖与阳极之间的初始间距小于两个反馈电极之间的初始间距的三分之一加上发射间距的和时,力平衡才能实现。对于质量块由多根平行悬臂梁支承的隧道加速度传感器,首次提出并证明,增大隧尖与悬臂梁末端的水平距离可以扩大锥尖高度和锥尖与阳极之间的初始间距的取值范围,从而降低对传感器加工工艺的要求。  相似文献   

13.
Based on the current spin density functional theory, a theoretical model of three vertically aligned semiconductor quantum dots is proposed and numerically studied. This quantum dot molecule (QDM) model is treated with realistic hard-wall confinement potential and external magnetic field in three-dimensional setting. Using the effective-mass approximation with band nonparabolicity, the many-body Hamiltonian results in a cubic eigenvalue problem from a finite difference discretization. A self-consistent algorithm for solving the Schrödinger-Poisson system by using the Jacobi-Davidson method and GMRES is given to illustrate the Kohn-Sham orbitals and energies of six electrons in the molecule with some magnetic fields. It is shown that the six electrons residing in the central dot at zero magnetic field can be changed to such that each dot contains two electrons with some feasible magnetic field. The Förster-Dexter resonant energy transfer may therefore be generated by two individual QDMs. This may motivate a new paradigm of Fermionic qubits for quantum computing in solid-state systems.  相似文献   

14.
Subhash Kak 《Cryptologia》2016,40(4):348-354
This article shows how quantum entanglement may be simulated in classical computing. The simulated entanglement protocol is implemented using oblivious transfer in the simplest case and other many-to-one mappings in more general cases. For the case where the mapping is of order k, the author proves a theorem that gives the function of the entangled state. A useful generalization beyond this research will be the implementation of quantum states with arbitrary probability amplitude functions.  相似文献   

15.
针对目标态为纯态的情况,本文对有限维随机开放量子系统,提出一种同时适用于本征态和叠加态的开关控制,它是由常量控制和基于李雅普诺夫方法设计的控制律组成,实现随机开放量子系统的状态转移和收敛控制,其中,李雅普诺夫函数为系统的状态距离,常量控制用来驱动系统状态从初始状态进入含有目标态的收敛域中,李雅普诺夫控制用来使进入收敛域中的状态继续收敛到期望的目标态.将所提出的控制方法,应用于2比特随机开放量子系统进行了数值仿真实验,并与本征态开关控制律方法进行了性能对比,实验结果表明了所提出的控制律的优越性.  相似文献   

16.
The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.  相似文献   

17.
The problem of choosing a static shortest-path system that minimizes maximum edge congestion in a network is studied. Bounds based on parameters, such as diameter, bisection width, and average distance, are derived and conditions for producing uniform congestion on all edges are explored. Trees are shown to have maximum congestion on edges that are incident to a centroid node. Cartesian product graphs, which generalize multidimensional meshes, are shown to satisfy several closure properties and a generic factor-routing scheme is defined and shown to be optimal in many cases  相似文献   

18.
In this paper, we present a new approach to electron transports in nano-scale devices by using Nelson's quantum stochastic mechanical simulations. Transferring electrons in pure and doped graphene ribbons (GRs) are numerically investigated as quantum Brownian motions with wavefunctions of isolated GRs. The time evolution of the quantum stochastic process is given by Ito type stochastic differential equation. From the analysis of the electron motion, we directly obtain the electron mobilities in GRs under some electric fields. We show the electron motion depends on the stochastic distribution of the eigenfunction or the molecular orbital and then the electron mobility is affected by the dopant atom.  相似文献   

19.
在石墨烯、壳聚糖和1-乙基-3-甲基眯唑四氟硼酸盐([BMIM])复合材料(Graphene—Chits-[BMIM])表面电沉积金,并自组装L-半胱氨酸包覆CdTe量子点,制备了修饰玻碳电极新型双酚A传感器。采用循环伏安法和电化学交流阻抗等方法研究了修饰电极的电化学特性。由于Graphene-Chits-[BMIM]复合材料中,石墨烯和[BMIMI都具有良好的导电性,该修饰电极对于双酚A有较好的电流响应。在最佳条件下,该传感器对双酚A的检测浓度范围:5.0×10^-8~7.05×10^-6mol/L,检测限为2.0×10^-8mol/L(3倍信噪比),相关系数为0.999。  相似文献   

20.
The pure quantum entanglement is generalized to the case of mixed compound states to include the classical and quantum encodings as particular cases. The true quantum entanglements are characterized as transpose-CP but not CP maps. The entangled information is introduced as the relative entropy of the mutual and the input state and total information of the entangled states leads to two different types of entropy for a given quantum state: the von Neumann entropy, which is achieved as the supremum of the information over all c-entanglements, and the true quantum entropy, which is achieved at the standard entanglement. The q-capacity, defined as the supremum over all entanglements, doubles the c-capacity in the case of the simple algebra. The conditional q-entropy is positive, and q-information of a quantum channel is additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号