首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.  相似文献   

2.
Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length \(n=q^{m}-1\) over \(F_{q}\), where \(q\ge 5\) is a prime power. The second one is the asymmetric quantum codes with length \(n=3^{m}-1\). These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set \(T_{1}=T_{2}^{-q}\), then the real Z-distance of our asymmetric quantum codes are much larger than \(\delta _\mathrm{max}+1\), where \(\delta _\mathrm{max}\) is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.  相似文献   

3.
Structural properties of u-constacyclic codes over the ring \({\mathbb {F}}_p+u{\mathbb {F}}_p\) are given, where p is an odd prime and \(u^2=1\). Under a special Gray map from \({\mathbb {F}}_p+u{\mathbb {F}}_p\) to \({\mathbb {F}}_p^2\), some new non-binary quantum codes are obtained by this class of constacyclic codes.  相似文献   

4.
In this paper, we construct several new families of quantum codes with good parameters. These new quantum codes are derived from (classical) t-point (\(t\ge 1\)) algebraic geometry (AG) codes by applying the Calderbank–Shor–Steane (CSS) construction. More precisely, we construct two classical AG codes \(C_1\) and \(C_2\) such that \(C_1\subset C_2\), applying after the well-known CSS construction to \(C_1\) and \(C_2\). Many of these new codes have large minimum distances when compared with their code lengths as well as they also have small Singleton defects. As an example, we construct a family \({[[46, 2(t_2 - t_1), d]]}_{25}\) of quantum codes, where \(t_1 , t_2\) are positive integers such that \(1<t_1< t_2 < 23\) and \(d\ge \min \{ 46 - 2t_2 , 2t_1 - 2 \}\), of length \(n=46\), with minimum distance in the range \(2\le d\le 20\), having Singleton defect at most four. Additionally, by applying the CSS construction to sequences of t-point (classical) AG codes constructed in this paper, we generate sequences of asymptotically good quantum codes.  相似文献   

5.
In this work, we further improve the distance of the quantum maximum distance separable (MDS) codes of length \(n=\frac{q^2+1}{10}\). This yields new families of quantum MDS codes. We also construct a family of new quantum MDS codes with parameters \([[\frac{q^2-1}{3}, \frac{q^2-1}{3}-2d+2, d]]_{q}\), where \(q=2^m\), \(2\le d\le \frac{q-1}{3}\) if \(3\mid (q+2)\), and \(2\le d\le \frac{2q-1}{3}\) if \(3\mid (q+1)\). Compared with the known quantum MDS codes, these quantum MDS codes have much larger minimum distance.  相似文献   

6.
Let \(R=\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}+\cdots +u^{k}\mathbb {F}_{2^{m}}\), where \(\mathbb {F}_{2^{m}}\) is the finite field with \(2^{m}\) elements, m is a positive integer, and u is an indeterminate with \(u^{k+1}=0.\) In this paper, we propose the constructions of two new families of quantum codes obtained from dual-containing cyclic codes of odd length over R. A new Gray map over R is defined, and a sufficient and necessary condition for the existence of dual-containing cyclic codes over R is given. A new family of \(2^{m}\)-ary quantum codes is obtained via the Gray map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R. In particular, a new family of binary quantum codes is obtained via the Gray map, the trace map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R.  相似文献   

7.
In this paper, two families of non-narrow-sense (NNS) BCH codes of lengths \(n=\frac{q^{2m}-1}{q^2-1}\) and \(n=\frac{q^{2m}-1}{q+1}\) (\(m\ge 3)\) over the finite field \(\mathbf {F}_{q^2}\) are studied. The maximum designed distances \(\delta ^\mathrm{new}_\mathrm{max}\) of these dual-containing BCH codes are determined by a careful analysis of properties of the cyclotomic cosets. NNS BCH codes which achieve these maximum designed distances are presented, and a sequence of nested NNS BCH codes that contain these BCH codes with maximum designed distances are constructed and their parameters are computed. Consequently, new nonbinary quantum BCH codes are derived from these NNS BCH codes. The new quantum codes presented here include many classes of good quantum codes, which have parameters better than those constructed from narrow-sense BCH codes, negacyclic and constacyclic BCH codes in the literature.  相似文献   

8.
Constructions of quantum caps in projective space PG(r, 4) by recursive methods and computer search are discussed. For each even n satisfying \(n\ge 282\) and each odd z satisfying \(z\ge 275\), a quantum n-cap and a quantum z-cap in \(PG(k-1, 4)\) with suitable k are constructed, and \([[n,n-2k,4]]\) and \([[z,z-2k,4]]\) quantum codes are derived from the constructed quantum n-cap and z-cap, respectively. For \(n\ge 282\) and \(n\ne 286\), 756 and 5040, or \(z\ge 275\), the results on the sizes of quantum caps and quantum codes are new, and all the obtained quantum codes are optimal codes according to the quantum Hamming bound. While constructing quantum caps, we also obtain many large caps in PG(r, 4) for \(r\ge 11\). These results concerning large caps provide improved lower bounds on the maximal sizes of caps in PG(r, 4) for \(r\ge 11\).  相似文献   

9.
What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).  相似文献   

10.
The entanglement-assisted stabilizer formalism overcomes the dual-containing constraint of standard stabilizer formalism for constructing quantum codes. This allows ones to construct entanglement-assisted quantum error-correcting codes (EAQECCs) from arbitrary linear codes by pre-shared entanglement between the sender and the receiver. However, it is not easy to determine the number c of pre-shared entanglement pairs required to construct an EAQECC from arbitrary linear codes. In this paper, let q be a prime power, we aim to construct new q-ary EAQECCs from constacyclic codes. Firstly, we define the decomposition of the defining set of constacyclic codes, which transforms the problem of determining the number c into determining a subset of the defining set of underlying constacyclic codes. Secondly, five families of non-Hermitian dual-containing constacyclic codes are discussed. Hence, many entanglement-assisted quantum maximum distance separable codes with \(c\le 7\) are constructed from them, including ones with minimum distance \(d\ge q+1\). Most of these codes are new, and some of them have better performance than ones obtained in the literature.  相似文献   

11.
A quantum Otto heat engine is studied with multilevel identical particles trapped in one-dimensional box potential as working substance. The symmetrical wave function for Bosons and the anti-symmetrical wave function for Fermions are considered. In two-particle case, we focus on the ratios of \(W^i\) (\(i=B,F\)) to \(W_s\), where \(W^\mathrm{B}\) and \(W^\mathrm{F}\) are the work done by two Bosons and Fermions, respectively, and \(W_s\) is the work output of a single particle under the same conditions. Due to the symmetrical of the wave functions, the ratios are not equal to 2. Three different regimes, low-temperature regime, high-temperature regime, and intermediate-temperature regime, are analyzed, and the effects of energy level number and the differences between the two baths are calculated. In the multiparticle case, we calculate the ratios of \(W^i_M/M\) to \(W_s\), where \(W^i_M/M\) can be seen as the average work done by a single particle in multiparticle heat engine. For other working substances whose energy spectrum has the form of \(E_n\sim n^2\), the results are similar. For the case \(E_n\sim n\), two different conclusions are obtained.  相似文献   

12.
This paper proposes a cost-efficient quantum multiplier–accumulator unit. The paper also presents a fast multiplication algorithm and designs a novel quantum multiplier device based on the proposed algorithm with the optimum time complexity as multiplier is the major device of a multiplier–accumulator unit. We show that the proposed multiplication technique has time complexity \(O((3 {\hbox {log}}_{2}n)+1)\), whereas the best known existing technique has \(O(n{\hbox {log}}_{2} n)\), where n is the number of qubits. In addition, our design proposes three new quantum circuits: a circuit representing a quantum full-adder, a circuit known as quantum ANDing circuit, which performs the ANDing operation and a circuit presenting quantum accumulator. Moreover, the proposed quantum multiplier–accumulator unit is the first ever quantum multiplier–accumulator circuit in the literature till now, which has reduced garbage outputs and ancillary inputs to a great extent. The comparative study shows that the proposed quantum multiplier performs better than the existing multipliers in terms of depth, quantum gates, delays, area and power with the increasing number of qubits. Moreover, we design the proposed quantum multiplier–accumulator unit, which performs better than the existing ones in terms of hardware and delay complexities, e.g., the proposed (\(n\times n\))—qubit quantum multiplier–accumulator unit requires \(O(n^{2})\) hardware and \(O({\hbox {log}}_{2}n)\) delay complexities, whereas the best known existing quantum multiplier–accumulator unit requires \(O(n^{3})\) hardware and \(O((n-1)^{2} +1+n)\) delay complexities. In addition, the proposed design achieves an improvement of 13.04, 60.08 and 27.2% for \(4\times 4\), 7.87, 51.8 and 27.1% for \(8\times 8\), 4.24, 52.14 and 27% for \(16\times 16\), 2.19, 52.15 and 27.26% for \(32 \times 32\) and 0.78, 52.18 and 27.28% for \(128 \times 128\)-qubit multiplications over the best known existing approach in terms of number of quantum gates, ancillary inputs and garbage outputs, respectively. Moreover, on average, the proposed design gains an improvement of 5.62% in terms of area and power consumptions over the best known existing approach.  相似文献   

13.
This paper aims to develop new and fast algorithms for recovering a sparse vector from a small number of measurements, which is a fundamental problem in the field of compressive sensing (CS). Currently, CS favors incoherent systems, in which any two measurements are as little correlated as possible. In reality, however, many problems are coherent, and conventional methods such as \(L_1\) minimization do not work well. Recently, the difference of the \(L_1\) and \(L_2\) norms, denoted as \(L_1\)\(L_2\), is shown to have superior performance over the classic \(L_1\) method, but it is computationally expensive. We derive an analytical solution for the proximal operator of the \(L_1\)\(L_2\) metric, and it makes some fast \(L_1\) solvers such as forward–backward splitting (FBS) and alternating direction method of multipliers (ADMM) applicable for \(L_1\)\(L_2\). We describe in details how to incorporate the proximal operator into FBS and ADMM and show that the resulting algorithms are convergent under mild conditions. Both algorithms are shown to be much more efficient than the original implementation of \(L_1\)\(L_2\) based on a difference-of-convex approach in the numerical experiments.  相似文献   

14.
15.
A well-established method of constructing hash functions is to base them on non-compressing primitives, such as one-way functions or permutations. In this work, we present \(S^r\), an \(rn\)-to-\(n\)-bit compression function (for \(r\ge 1\)) making \(2r-1\) calls to \(n\)-to-\(n\)-bit primitives (random functions or permutations). \(S^r\) compresses its inputs at a rate (the amount of message blocks per primitive call) up to almost 1/2, and it outperforms all existing schemes with respect to rate and/or the size of underlying primitives. For instance, instantiated with the \(1600\)-bit permutation of NIST’s SHA-3 hash function standard, it offers about \(800\)-bit security at a rate of almost 1/2, while SHA-3-512 itself achieves only \(512\)-bit security at a rate of about \(1/3\). We prove that \(S^r\) achieves asymptotically optimal collision security against semi-adaptive adversaries up to almost \(2^{n/2}\) queries and that it can be made preimage secure up to \(2^n\) queries using a simple tweak.  相似文献   

16.
We construct two sets of incomplete and extendible quantum pure orthogonal product states (POPS) in general bipartite high-dimensional quantum systems, which are all indistinguishable by local operations and classical communication. The first set of POPS is composed of two parts which are \(\mathcal {C}^m\otimes \mathcal {C}^{n_1}\) with \(5\le m\le n_1\) and \(\mathcal {C}^m\otimes \mathcal {C}^{n_2}\) with \(5\le m \le n_2\), where \(n_1\) is odd and \(n_2\) is even. The second one is in \(\mathcal {C}^m\otimes \mathcal {C}^n\) \((m, n\ge 4)\). Some subsets of these two sets can be extended into complete sets that local indistinguishability can be decided by noncommutativity which quantifies the quantumness of a quantum ensemble. Our study shows quantum nonlocality without entanglement.  相似文献   

17.
We study the Z(2) gauge-invariant neural network which is defined on a partially connected random network and involves Z(2) neuron variables \(S_i\) (\(=\pm \)1) and Z(2) synaptic connection (gauge) variables \(J_{ij}\) (\(=\pm \)1). Its energy consists of the Hopfield term \(-c_1S_iJ_{ij}S_j\), double Hopfield term \(-c_2 S_iJ_{ij}J_{jk} S_k\), and the reverberation (triple Hopfield) term \(-c_3 J_{ij}J_{jk}J_{ki}\) of synaptic self interactions. For the case \(c_2=0\), its phase diagram in the \(c_3-c_1\) plane has been studied both for the symmetric couplings \(J_{ij}=J_{ji}\) and asymmetric couplings (\(J_{ij}\) and \(J_{ji}\) are independent); it consists of the Higgs, Coulomb and confinement phases, each of which is characterized by the ability of learning and/or recalling patterns. In this paper, we consider the phase diagram for the case of nonvanishing \(c_2\), and examine its effect. We find that the \(c_2\) term enlarges the region of Higgs phase and generates a new second-order transition. We also simulate the dynamical process of learning patterns of \(S_i\) and recalling them and measure the performance directly by overlaps of \(S_i\). We discuss the difference in performance for the cases of Z(2) variables and real variables for synaptic connections.  相似文献   

18.
A new weak Galerkin (WG) finite element method is developed and analyzed for solving second order elliptic problems with low regularity solutions in the Sobolev space \(W^{2,p}(\Omega )\) with \(p\in (1,2)\). A WG stabilizer was introduced by Wang and Ye (Math Comput 83:2101–2126, 2014) for a simpler variational formulation, and it has been commonly used since then in the WG literature. In this work, for the purpose of dealing with low regularity solutions, we propose to generalize the stabilizer of Wang and Ye by introducing a positive relaxation index to the mesh size h. The relaxed stabilization gives rise to a considerable flexibility in treating weak continuity along the interior element edges. When the norm index \(p\in (1,2]\), we strictly derive that the WG error in energy norm has an optimal convergence order \(O(h^{l+1-\frac{1}{p}-\frac{p}{4}})\) by taking the relaxed factor \(\beta =1+\frac{2}{p}-\frac{p}{2}\), and it also has an optimal convergence order \(O(h^{l+2-\frac{2}{p}})\) in \(L^2\) norm when the solution \(u\in W^{l+1,p}\) with \(p\in [1,1+\frac{2}{p}-\frac{p}{2}]\) and \(l\ge 1\). It is recovered for \(p=2\) that with the choice of \(\beta =1\), error estimates in the energy and \(L^2\) norms are optimal for the source term in the sobolev space \(L^2\). Weak variational forms of the WG method give rise to desirable flexibility in enforcing boundary conditions and can be easily implemented without requiring a sufficiently large penalty factor as in the usual discontinuous Galerkin methods. In addition, numerical results illustrate that the proposed WG method with an over-relaxed factor \(\beta (\ge 1)\) converges at optimal algebraic rates for several low regularity elliptic problems.  相似文献   

19.
In this paper, we investigate the ground-state fidelity and fidelity susceptibility in the many-body Yang–Baxter system and analyze their connections with quantum phase transition. The Yang–Baxter system was perturbed by a twist of \( e^{i\varphi } \) at each bond, where the parameter \( \varphi \) originates from the q-deformation of the braiding operator U with \(q = e^{-i\varphi }\) (Jimbo in Yang–Baxter equations in integrable systems, World Scientific, Singapore, 1990), and \( \varphi \) has a physical significance of magnetic flux (Badurek et al. in Phys. Rev. D 14:1177, 1976). We test the ground-state fidelity related by a small parameter variation \(\varphi \) which is a different term from the one used for driving the system toward a quantum phase transition. It shows that ground-state fidelity develops a sharp drop at the transition. The drop gets sharper as system size N increases. It has been verified that a sufficiently small value of \(\varphi \) used has no effect on the location of the critical point, but affects the value of \( F(g_{c},\varphi ) \). The smaller the twist \(\varphi \), the more the value of \( F(g_{c},\varphi ) \) is close to 0. In order to avoid the effect of the finite value of \( \varphi \), we also calculate the fidelity susceptibility. Our results demonstrate that in the Yang–Baxter system, the quantum phase transition can be well characterized by the ground-state fidelity and fidelity susceptibility in a special way.  相似文献   

20.
A method for calculating the one-way quantum deficit is developed. It involves a careful study of post-measured entropy shapes. We discovered that in some regions of X-state space the post-measured entropy \(\tilde{S}\) as a function of measurement angle \(\theta \in [0,\pi /2]\) exhibits a bimodal behavior inside the open interval \((0,\pi /2)\), i.e., it has two interior extrema: one minimum and one maximum. Furthermore, cases are found when the interior minimum of such a bimodal function \(\tilde{S}(\theta )\) is less than that one at the endpoint \(\theta =0\) or \(\pi /2\). This leads to the formation of a boundary between the phases of one-way quantum deficit via finite jumps of optimal measured angle from the endpoint to the interior minimum. Phase diagram is built up for a two-parameter family of X states. The subregions with variable optimal measured angle are around 1\(\%\) of the total region, with their relative linear sizes achieving \(17.5\%\), and the fidelity between the states of those subregions can be reduced to \(F=0.968\). In addition, a correction to the one-way deficit due to the interior minimum can achieve \(2.3\%\). Such conditions are favorable to detect the subregions with variable optimal measured angle of one-way quantum deficit in an experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号