首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum correlations characterized by quantum entanglement and quantum discord play important roles in many quantum information processing. We study the relations among the entanglement of formation, concurrence, tangle, linear entropy-based classical correlation and von Neumann entropy-based classical correlation . We present analytical formulae of linear entropy-based classical correlation for arbitrary \(d\otimes 2\) quantum states and von Neumann entropy-based classical correlation for arbitrary \(2\otimes 2\) rank-2 quantum states. From the von Neumann entropy-based classical correlation, we derive an explicit formula of quantum discord for arbitrary rank-2 two-qubit quantum states.  相似文献   

2.
Quantum correlations are thought to be the reason why certain quantum algorithms overcome their classical counterparts. Since the nature of this resource is still not fully understood, we shall investigate how multipartite entanglement and non-locality among qubits vary as the quantum computation runs. We shall encounter that quantum measures on the whole system cannot account for their corresponding speedup.  相似文献   

3.
Quantum networks with independent sources of entanglement (hidden variables) and nodes that execute joint quantum measurements can create strong quantum correlations spanning the breadth of the network. Understanding of these correlations has to the present been limited to standard Bell experiments with one source of shared randomness, bilocal arrangements having two local sources of shared randomness, and multilocal networks with tree topologies. We introduce here a class of quantum networks with ring topologies comprised of subsystems each with its own internally shared source of randomness. We prove a Bell inequality for these networks, and to demonstrate violations of this inequality, we focus on ring networks with three-qubit subsystems. Three qubits are capable of two non-equivalent types of entanglement, GHZ and W-type. For rings of any number N of three-qubit subsystems, our inequality is violated when the subsystems are each internally GHZ-entangled. This violation is consistently stronger when N is even. This quantitative even-odd difference for GHZ entanglement becomes extreme in the case of W-type entanglement. When the ring size N is even, the presence of W-type entanglement is successfully detected; when N is odd, the inequality consistently fails to detect its presence.  相似文献   

4.
We have proposed a scheme of the generation and preservation of two-qubit steady-state quantum correlations through quantum channels where successive uses of the channels are correlated. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels, have been taken into account. Some analytical or numerical results are presented. The effect of channels with memory on dynamics of quantum correlations has been discussed in detail. The results show that steady-state entanglement between two initial qubits whose initial states are prepared in a specific family states without entanglement subject to amplitude damping channel with memory can be generated. The entanglement creation is related to the memory coefficient of channel \(\mu \). The stronger the memory coefficient of channel \( \mu \) is, the more the entanglement creation is, and the earlier the separable state becomes the entangled state. Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit system is initially prepared in an entangled state. We show that entanglement dynamics suddenly disappears, while quantum discord dynamics displays only in the asymptotic limit. Furthermore, two-qubit quantum correlations can be preserved at a long time in the limit of \(\mu \rightarrow 1\).  相似文献   

5.
Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by \(2\times 2\) density matrices, we determine a particular Riemannian metric for a state \(\rho \) and show that if \(\rho \) gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.  相似文献   

6.
In this paper, we study thermal quantum correlations as quantum discord and entanglement in bipartite system imposed by external magnetic field with Herring–Flicker coupling, i.e., \(J(R)=1.642 e^{-2 R} R^{5/2}+O(R^{2}e^{-2R})\). The Herring–Flicker coupling strength is the function of R, which is the distance between spins and systems carry XXX Heisenberg interaction. By tuning the coupling distance R, temperature and magnetic field quantum correlations can be scaled in the bipartite system. We find the long sustainable behavior of quantum discord in comparison with entanglement over the coupling distance R. We also investigate the situations, where entanglement totally dies but quantum discord exists in the system.  相似文献   

7.
Quantum discord, as a measure of all quantum correlations, has been proposed as the key resource in certain quantum communication tasks and quantum computational models without containing much entanglement. Daki? et al. (Phys Rev Lett 105:190502, 2010) introduced a geometric measure of quantum discord (GMQD) and derived an explicit formula for any two-qubit state. Luo and Fu (Phys Rev A 82:034302, 2010) introduced another form of GMQD and derived an explicit formula for arbitrary state in a bipartite quantum system. However, the explicit analytical expression for any bipartite system was not given. In this work, we give out the explicit analytical expressions of the GMQD for a two-parameter class of states in a qubit–qutrit system and study its dynamics for the states under various dissipative channels in the first time. Our results show that all these dynamic evolutions do not lead to a sudden vanishing of GMQD. Quantum correlations vanish at an asymptotic time for local or multi-local dephasing, phase-flip, and depolarizing noise channels. However, it does not disappear even though t → ∞ for local trit-flip and local trit-phase-flip channels. Our results maybe provide some important information for the application of GMQD in hybrid qubit–qutrit systems in quantum information.  相似文献   

8.
Tripartite and bipartite quantum correlations in the three-qubit XXZ Heisenberg spin chain with two types of three-site interactions and an external magnetic field are investigated. We show that the increase in XZY ? YZX interaction can enhance the robustness of both tripartite and bipartite correlations, whereas the increase in XZX \(+\) YZY interaction could improve the robustness of tripartite quantum correlations, but diminish the robustness of bipartite quantum correlations. Tripartite measurement-induced disturbance is the most robust against temperature, and bipartite entanglement is the most fragile. Tripartite entanglement is even more robust than bipartite quantum discord when XZX \(+\) YZY or XZY ? YZX interaction is relatively large. The cooperative effect of XZX \(+\) YZY and XZY ? YZX interaction could induce bipartite entanglement even at high temperature. The cooperative effect of XZX \(+\) YZY and XZY ? YZX interaction is the most optimal to improve the robustness of all quantum correlations when the magnetic field is negative. When the magnetic field is positive, the effective of XZY ? YZX interaction alone is more ideal to preserve different quantum correlations.  相似文献   

9.
Recently, the method that using an entanglement as a resource to distinguish orthogonal product states by local operations and classical communication (LOCC) has brought into focus. Zhang et al. (Sci Rep 6:30493, 2016) presented protocols which use an entanglement to distinguish some classes of orthogonal product states in \(\mathbb {C}^m\otimes \mathbb {C}^n\). In this paper, we mainly study the local distinguishability of multipartite product states. For the class of locally indistinguishable multipartite product states constructed by Wang et al. (Quantum Inf Process 16:5, 2017), we present a protocol that distinguishes perfectly these quantum states by LOCC using an entangled state as a resource for implementing quantum measurements.  相似文献   

10.
Although quantum correlations in a quantum system are characterized by the evolving quantities (which are entanglement and discord usually), we reveal such basis (i.e. the set of virtual particles) for the representation of the density matrix that the entanglement and/or discord between any two virtual particles in such representation are stationary. In particular, dealing with the nearest neighbor approximation, this system of virtual particles is represented by the $\beta $ -fermions of the Jordan–Wigner transformation. Such systems are important in quantum information devices because the evolution of quantum entanglement/discord leads to the problems of realization of quantum operations. The advantage of stationary entanglement/discord is that they are completely defined by the initial density matrix and by the Hamiltonian governing the quantum dynamics in the system under consideration. Moreover, using the special initial condition together with the special system’s geometry, we construct large cluster of virtual particles with the same pairwise entanglement/discord. In other words, the measure of quantum correlations is stationary in this system and correlations are uniformly “distributed” among all virtual particles. As examples, we use both homogeneous and non-homogeneous spin-1/2 open chains with XY-interaction although other types of interactions might be also of interest.  相似文献   

11.
We constructed a class of non-maximally entangled mixed states (Adhikari et al. in Quantum Inf Comput 10:0398, 2010) and extensively studied their entanglement properties and also their usefulness as teleportation channels. In this article, we have revisited our constructed state and have studied it from three different perspectives. Since every entangled state is associated with a witness operator, we have found a suitable entanglement as well as teleportation witness operator for our non-maximally entangled mixed states. We considered the noisy channel’s effects on our constructed states to see how much it affects the states’ capacities as teleportation channels. For this purpose, we have mainly focussed on amplitude damping channel. A comparative study on concurrence and quantum discord of our constructed state of Adhikari et al. (2010) has also been carried out here.  相似文献   

12.
We investigate bipartite quantum correlations in the presence of the four-dimensional Kerr–Newman black hole using the negativity as a measure for the entanglement. We assume Alice and Rob initially share a maximally entangled state, and then Rob accelerates toward the event horizon \(h_{+}\). We find that when Rob accelerates uniformly toward the external horizon, the entanglement degrades for the Alice–Rob system and this degradation increases as Rob gets closer to the horizon. It is found that for the case Alice–AntiRob, no creation of quantum correlation occurs. Finally, we investigate the bipartite entanglement using an alternative entanglement measure, namely generalized concurrence, and we show that the results are in consistent with those obtained by negativity.  相似文献   

13.
We study behavior of quantum discord, a kind of quantum correlation, in systems of dipole–dipole interacting spins in an external magnetic field in the whole temperature range ( \(-\infty ). It was shown that negative temperatures, which are introduced to describe inversions in the population in a finite level system, provide more favorable conditions for emergence of quantum correlations including entanglement. We show that at negative temperature, the correlations become more intense and discord exists between remote spins being in separated states.  相似文献   

14.
In this work, we propose a measure for the quantum discord of indistinguishable particles, based on the definition of entanglement of particles given in Wiseman and Vaccaro (Phys Rev Lett 91:097902, 2003. doi: 10.1103/PhysRevLett.91.097902). This discord of particles is then used to evaluate the quantum correlations in a system of two identical bosons (fermions), where the particles perform a quantum random walk described by the Hubbard Hamiltonian in a 1D lattice. The dynamics of the particles is either unperturbed or subject to a classical environmental noise—such as random telegraph, pink or brown noise. The observed results are consistent with those for the entanglement of particles, and we observe that on-site interaction between particles have an important protective effect on correlations against the decoherence of the system.  相似文献   

15.
We develop a generalized teleportation scheme based on quantum walks with two coins. For an unknown qubit state, we use two-step quantum walks on the line and quantum walks on the cycle with four vertices for teleportation. For any d-dimensional states, quantum walks on complete graphs and quantum walks on d-regular graphs can be used for implementing teleportation. Compared with existing d-dimensional states teleportation, prior entangled state is not required and the necessary maximal entanglement resource is generated by the first step of quantum walk. Moreover, two projective measurements with d elements are needed by quantum walks on the complete graph, rather than one joint measurement with \(d^2\) basis states. Quantum walks have many applications in quantum computation and quantum simulations. This is the first scheme of realizing communicating protocol with quantum walks, thus opening wider applications.  相似文献   

16.
The entropic uncertainty relations are a very active field of scientific inquiry. Their applications include quantum cryptography and studies of quantum phenomena such as correlations and non-locality. In this work we find entanglement-dependent entropic uncertainty relations in terms of the Tsallis entropies for states with a fixed amount of entanglement. Our main result is stated as Theorem 1. Taking the special case of von Neumann entropy and utilizing the concavity of conditional von Neumann entropies, we extend our result to mixed states. Finally we provide a lower bound on the amount of extractable key in a quantum cryptographic scenario.  相似文献   

17.
In this paper, we investigate the quantum phase transition (QTP) and quantum correlation in the one-dimensional mixed-spin (1/2, 1) XXZ model with Dzyaloshinskii–Moriya (DM) interaction under an inhomogeneous magnetic field. By controlling the strength of DM interaction and inhomogeneous magnetic field, we can change the phase transition points. The results show that the DM interaction plays an important role in improving the quantum correlation, which can be gained at higher temperature by choosing the proper strength of DM interaction. Moreover, the homogeneous magnetic field cannot change the critical temperature $T_{c}$ alone, while the inhomogeneous magnetic parameter $b$ can suppress the effects of temperature on negativity. In addition, we make an explicit comparison between the negativity and measurement-induced disturbance (MID) for this model and discover that MID is more robust than thermal entanglement against temperature $T$ and may reveal more properties about quantum correlations of the system than entanglement. Furthermore, in some circumstances, the MID can detect the critical points of quantum phase transition while the negativity cannot.  相似文献   

18.
Quantum phase transitions can be understood in terms of Landau’s symmetry-breaking theory. Following the discovery of the quantum Hall effect, a new kind of quantum phase can be classified according to topological rather than local order parameters. Both phases coexist for a class of exactly solvable quantum Ising models, for which the ground state energy density corresponds to a loop in a two-dimensional auxiliary space. Motivated by this we study quantum correlations, measured by entanglement and quantum discord, and critical behavior seen in the one-dimensional extended Ising model with short-range interaction. We show that the quantum discord exhibits distinctive behaviors when the system experiences different topological quantum phases denoted by different topological numbers. Quantum discords capability to detect a topological quantum phase transition is more reliable than that of entanglement at both zero and finite temperatures. In addition, by analyzing the divergent behaviors of quantum discord at the critical points, we find that the quantum phase transitions driven by different parameters of the model can also display distinctive critical behaviors, which provides a scheme to detect the topological quantum phase transition in practice.  相似文献   

19.
An experimentally feasible scheme is proposed for rapidly generating two-atom qutrit entanglement with one step. As one technique of shortcuts to adiabaticity, transitionless quantum driving is applied to speed up the adiabatic generation of two-atom qutrit entanglement. Apart from the rapid rate, the scheme has much higher experimental feasibility than the recent research (Yang et al. in Quantum Inf Process 16:15, 2017). Besides, numerical simulations indicate the scheme has strong robustness against parameter deviations and decoherence.  相似文献   

20.
Studies on two-particle quantum walks show that the spatial interaction between walkers will dynamically generate complex entanglement. However, those entanglement states are usually on a large state space and their evolutions are complex. It makes the entanglement states generated by quantum walk difficult to be applied directly in many applications of quantum information, such as quantum teleportation and quantum cryptography. In this paper, we firstly analyse a localization phenomena of two-particle quantum walk and then introduce how to use it to generate a Bell state. We will show that one special superposition component of the walkers’ state is localized on the root vertex if a certain interaction exists between walkers. This localization is interesting because it is contrary to our knowledge that quantum walk spreads faster than its classical counterpart. More interestingly, the localized component is a Bell state in the coin space of two walkers. By this method, we can obtain a Bell state easily from the quantum walk with spatial interaction by a local measurement, which is required in many applications. Through simulations, we verify that this method is able to generate the Bell state \(\frac{1}{\sqrt{2}}(|A \rangle _1|A\rangle _2 \pm |B\rangle _1|B\rangle _2)\) in the coin space of two walkers with fidelity greater than \(99.99999\,\%\) in theory, and we have at least a \(50\,\%\) probability to obtain the expected Bell state after a proper local measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号