首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length \(n=q^{m}-1\) over \(F_{q}\), where \(q\ge 5\) is a prime power. The second one is the asymmetric quantum codes with length \(n=3^{m}-1\). These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set \(T_{1}=T_{2}^{-q}\), then the real Z-distance of our asymmetric quantum codes are much larger than \(\delta _\mathrm{max}+1\), where \(\delta _\mathrm{max}\) is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.  相似文献   

2.
We study mutually unbiased maximally entangled bases (MUMEB’s) in bipartite system \(\mathbb {C}^d\otimes \mathbb {C}^d (d \ge 3)\). We generalize the method to construct MUMEB’s given in Tao et al. (Quantum Inf Process 14:2291–2300, 2015), by using any commutative ring R with d elements and generic character of \((R,+)\) instead of \(\mathbb {Z}_d=\mathbb {Z}/d\mathbb {Z}\). Particularly, if \(d=p_1^{a_1}p_2^{a_2}\ldots p_s^{a_s}\) where \(p_1, \ldots , p_s\) are distinct primes and \(3\le p_1^{a_1}\le \cdots \le p_s^{a_s}\), we present \(p_1^{a_1}-1\) MUMEB’s in \(\mathbb {C}^d\otimes \mathbb {C}^d\) by taking \(R=\mathbb {F}_{p_1^{a_1}}\oplus \cdots \oplus \mathbb {F}_{p_s^{a_s}}\), direct sum of finite fields (Theorem 3.3).  相似文献   

3.
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.  相似文献   

4.
We study the unextendible maximally entangled bases (UMEB) in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\) and connect the problem to the partial Hadamard matrices. We show that for a given special UMEB in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\), there is a partial Hadamard matrix which cannot be extended to a Hadamard matrix in \(\mathbb {C}^{d}\). As a corollary, any \((d-1)\times d\) partial Hadamard matrix can be extended to a Hadamard matrix, which answers a conjecture about \(d=5\). We obtain that for any d there is a UMEB except for \(d=p\ \text {or}\ 2p\), where \(p\equiv 3\mod 4\) and p is a prime. The existence of different kinds of constructions of UMEBs in \(\mathbb {C}^{nd}\bigotimes \mathbb {C}^{nd}\) for any \(n\in \mathbb {N}\) and \(d=3\times 5 \times 7\) is also discussed.  相似文献   

5.
In this paper, two families of non-narrow-sense (NNS) BCH codes of lengths \(n=\frac{q^{2m}-1}{q^2-1}\) and \(n=\frac{q^{2m}-1}{q+1}\) (\(m\ge 3)\) over the finite field \(\mathbf {F}_{q^2}\) are studied. The maximum designed distances \(\delta ^\mathrm{new}_\mathrm{max}\) of these dual-containing BCH codes are determined by a careful analysis of properties of the cyclotomic cosets. NNS BCH codes which achieve these maximum designed distances are presented, and a sequence of nested NNS BCH codes that contain these BCH codes with maximum designed distances are constructed and their parameters are computed. Consequently, new nonbinary quantum BCH codes are derived from these NNS BCH codes. The new quantum codes presented here include many classes of good quantum codes, which have parameters better than those constructed from narrow-sense BCH codes, negacyclic and constacyclic BCH codes in the literature.  相似文献   

6.
Structural properties of u-constacyclic codes over the ring \({\mathbb {F}}_p+u{\mathbb {F}}_p\) are given, where p is an odd prime and \(u^2=1\). Under a special Gray map from \({\mathbb {F}}_p+u{\mathbb {F}}_p\) to \({\mathbb {F}}_p^2\), some new non-binary quantum codes are obtained by this class of constacyclic codes.  相似文献   

7.
In this paper, we construct several new families of quantum codes with good parameters. These new quantum codes are derived from (classical) t-point (\(t\ge 1\)) algebraic geometry (AG) codes by applying the Calderbank–Shor–Steane (CSS) construction. More precisely, we construct two classical AG codes \(C_1\) and \(C_2\) such that \(C_1\subset C_2\), applying after the well-known CSS construction to \(C_1\) and \(C_2\). Many of these new codes have large minimum distances when compared with their code lengths as well as they also have small Singleton defects. As an example, we construct a family \({[[46, 2(t_2 - t_1), d]]}_{25}\) of quantum codes, where \(t_1 , t_2\) are positive integers such that \(1<t_1< t_2 < 23\) and \(d\ge \min \{ 46 - 2t_2 , 2t_1 - 2 \}\), of length \(n=46\), with minimum distance in the range \(2\le d\le 20\), having Singleton defect at most four. Additionally, by applying the CSS construction to sequences of t-point (classical) AG codes constructed in this paper, we generate sequences of asymptotically good quantum codes.  相似文献   

8.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

9.
In this paper, we propose an extended block Krylov process to construct two biorthogonal bases for the extended Krylov subspaces \(\mathbb {K}_{m}^e(A,V)\) and \(\mathbb {K}_{m}^e(A^{T},W)\), where \(A \in \mathbb {R}^{n \times n}\) and \(V,~W \in \mathbb {R}^{n \times p}\). After deriving some new theoretical results and algebraic properties, we apply the proposed algorithm with moment matching techniques for model reduction in large scale dynamical systems. Numerical experiments for large and sparse problems are given to show the efficiency of the proposed method.  相似文献   

10.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

11.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

12.
An interval extension of successive matrix squaring (SMS) method for computing the weighted Moore–Penrose inverse \(A^{\dagger }_{MN}\) along with its rigorous error bounds is proposed for given full rank \(m \times n\) complex matrices A, where M and N be two Hermitian positive definite matrices of orders m and n, respectively. Starting with a suitably chosen complex interval matrix containing \(A^{\dagger }_{MN}\), this method generates a sequence of complex interval matrices each enclosing \(A^{\dagger }_{MN}\) and converging to it. A new method is developed for constructing initial complex interval matrix containing \(A^{\dagger }_{MN}\). Convergence theorems are established. The R-order convergence is shown to be equal to at least l, where \(l \ge 2\). A number of numerical examples are worked out to demonstrate its efficiency and effectiveness. Graphs are plotted to show variations of the number of iterations and computational times compared to matrix dimensions. It is observed that ISMS is more stable compared to SMS.  相似文献   

13.
Using Bloch’s parametrization for qudits (d-level quantum systems), we write the Hilbert–Schmidt distance (HSD) between two generic n-qudit states as an Euclidean distance between two vectors of observables mean values in \(\mathbb {R}^{\Pi _{s=1}^{n}d_{s}^{2}-1}\), where \(d_{s}\) is the dimension for qudit s. Then, applying the generalized Gell–Mann’s matrices to generate \(\mathrm{SU}(d_{s})\), we use that result to obtain the Hilbert–Schmidt quantum coherence (HSC) of n-qudit systems. As examples, we consider in detail one-qubit, one-qutrit, two-qubit, and two copies of one-qubit states. In this last case, the possibility for controlling local and non-local coherences by tuning local populations is studied, and the contrasting behaviors of HSC, \(l_{1}\)-norm coherence, and relative entropy of coherence in this regard are noticed. We also investigate the decoherent dynamics of these coherence functions under the action of qutrit dephasing and dissipation channels. At last, we analyze the non-monotonicity of HSD under tensor products and report the first instance of a consequence (for coherence quantification) of this kind of property of a quantum distance measure.  相似文献   

14.
15.
The entanglement-assisted stabilizer formalism overcomes the dual-containing constraint of standard stabilizer formalism for constructing quantum codes. This allows ones to construct entanglement-assisted quantum error-correcting codes (EAQECCs) from arbitrary linear codes by pre-shared entanglement between the sender and the receiver. However, it is not easy to determine the number c of pre-shared entanglement pairs required to construct an EAQECC from arbitrary linear codes. In this paper, let q be a prime power, we aim to construct new q-ary EAQECCs from constacyclic codes. Firstly, we define the decomposition of the defining set of constacyclic codes, which transforms the problem of determining the number c into determining a subset of the defining set of underlying constacyclic codes. Secondly, five families of non-Hermitian dual-containing constacyclic codes are discussed. Hence, many entanglement-assisted quantum maximum distance separable codes with \(c\le 7\) are constructed from them, including ones with minimum distance \(d\ge q+1\). Most of these codes are new, and some of them have better performance than ones obtained in the literature.  相似文献   

16.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

17.
A square matrix V is called rigid if every matrix \({V^\prime}\) obtained by altering a small number of entries of V has sufficiently high rank. While random matrices are rigid with high probability, no explicit constructions of rigid matrices are known to date. Obtaining such explicit matrices would have major implications in computational complexity theory. One approach to establishing rigidity of a matrix V is to come up with a property that is satisfied by any collection of vectors arising from a low-dimensional space, but is not satisfied by the rows of V even after alterations. In this paper, we propose such a candidate property that has the potential of establishing rigidity of combinatorial design matrices over the field \({\mathbb{F}_2.}\) Stated informally, we conjecture that under a suitable embedding of \({\mathbb{F}_2^n}\) into \({\mathbb{R}^n,}\) vectors arising from a low-dimensional \({\mathbb{F}_2}\)-linear space always have somewhat small Kolmogorov width, i.e., admit a non-trivial simultaneous approximation by a low-dimensional Euclidean space. This implies rigidity of combinatorial designs, as their rows do not admit such an approximation even after alterations. Our main technical contribution is a collection of results establishing weaker forms and special cases of the conjecture above.  相似文献   

18.
A class of Fredholm integral equations of the second kind, with respect to the exponential weight function \(w(x)=\exp (-(x^{-\alpha }+x^\beta ))\), \(\alpha >0\), \(\beta >1\), on \((0,+\infty )\), is considered. The kernel k(xy) and the function g(x) in such kind of equations,
$$\begin{aligned} f(x)-\mu \int _0^{+\infty }k(x,y)f(y)w(y)\mathrm {d}y =g(x),\quad x\in (0,+\infty ), \end{aligned}$$
can grow exponentially with respect to their arguments, when they approach to \(0^+\) and/or \(+\infty \). We propose a simple and suitable Nyström-type method for solving these equations. The study of the stability and the convergence of this numerical method in based on our results on weighted polynomial approximation and “truncated” Gaussian rules, recently published in Mastroianni and Notarangelo (Acta Math Hung, 142:167–198, 2014), and Mastroianni, Milovanovi? and Notarangelo (IMA J Numer Anal 34:1654–1685, 2014) respectively. Moreover, we prove a priori error estimates and give some numerical examples. A comparison with other Nyström methods is also included.
  相似文献   

19.
Network cost and fixed-degree characteristic for the graph are important factors to evaluate interconnection networks. In this paper, we propose hierarchical Petersen network (HPN) that is constructed in recursive and hierarchical structure based on a Petersen graph as a basic module. The degree of HPN(n) is 5, and HPN(n) has \(10^n\) nodes and \(2.5 \times 10^n\) edges. And we analyze its basic topological properties, routing algorithm, diameter, spanning tree, broadcasting algorithm and embedding. From the analysis, we prove that the diameter and network cost of HPN(n) are \(3\log _{10}N-1\) and \(15 \log _{10}N-1\), respectively, and it contains a spanning tree with the degree of 4. In addition, we propose link-disjoint one-to-all broadcasting algorithm and show that HPN(n) can be embedded into FP\(_k\) with expansion 1, dilation 2k and congestion 4. For most of the fixed-degree networks proposed, network cost and diameter require \(O(\sqrt{N})\) and the degree of the graph requires O(N). However, HPN(n) requires O(1) for the degree and \(O(\log _{10}N)\) for both diameter and network cost. As a result, the suggested interconnection network in this paper is superior to current fixed-degree and hierarchical networks in terms of network cost, diameter and the degree of the graph.  相似文献   

20.
In this work, we further improve the distance of the quantum maximum distance separable (MDS) codes of length \(n=\frac{q^2+1}{10}\). This yields new families of quantum MDS codes. We also construct a family of new quantum MDS codes with parameters \([[\frac{q^2-1}{3}, \frac{q^2-1}{3}-2d+2, d]]_{q}\), where \(q=2^m\), \(2\le d\le \frac{q-1}{3}\) if \(3\mid (q+2)\), and \(2\le d\le \frac{2q-1}{3}\) if \(3\mid (q+1)\). Compared with the known quantum MDS codes, these quantum MDS codes have much larger minimum distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号