首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 980 毫秒
1.
This work proposes two quantum dialogue protocols, each of which is robust against one of the following two kinds of collective noise: collective-dephasing noise and collective-rotation noise. Both quantum dialogue protocols are constructed from four-qubit DF states that consist of two Bell states. The receiver simply performs two Bell state measurements to obtain the secret message. Moreover, the proposed protocols are free from information leakage because some shared private quantum states are established in the new protocols to allow the legitimate users to exchange their secret messages securely.  相似文献   

2.
Quantum dialogue network, as a considerable topic, promotes high efficiency and instantaneousness in quantum communication through simultaneously deducing the secret information over the quantum channel. A new quantum network dialogue protocol is proposed based on continuous-variable GHZ states. In the protocol, the quantum dialogue could be conducted simultaneously among multiple legitimate communication parties. The security of the proposed protocol is ensured by the correlation of continuous-variable GHZ entangled states and the decoy states inserted into the GHZ states in the randomly selected time slots. In addition, the proposed quantum network dialogue protocol with continuous-variable quantum states improves the communication efficiency with the perfect utilization of quantum bits greatly.  相似文献   

3.
The novel quantum dialogue (QD) protocol by using the three-dimensional Bell states and entanglement swapping (Wang et al. in Quantum Inf Process 15(6):2593–2603, 2016) is analyzed. It is shown that there is the information leakage problem in this QD protocol. To be specific, one quarter information of the secret messages exchanged is leaked out unconsciously. Afterward, it is improved to a truly secure one without information leakage. Besides, the security of the improved QD protocol is analyzed in detail. It is shown that the improved QD protocol has some obvious features compared with the original one.  相似文献   

4.
This work proposes a quantum dialogue (QD) based on single photons, which not only allows two communicants to exchange their secret messages simultaneously via a one-step quantum transmission but also can confirm the message integrity. Moreover, the proposed QD protocol is free from information leakage. Compared with the previous QDs, the proposed QD protocol is more efficient. It is also secure against several well-known attacks.  相似文献   

5.
Recently, Chang et al. (Quantum Inf Process 14:3515–3522, 2015) proposed a controlled bidirectional quantum direct communication protocol using Bell states. In this work, the significance of Bell states, which are being used as initial states in Chang et al. protocol, is elucidated. The possibility of preparing initial state based on the secret message of the communicants is explored. In doing so, the controller-independent bidirectional quantum direct communication protocol has evolved naturally. It is shown that any communicant cannot read the secret message without knowing the initial states generated by the other communicant. Further, intercept-and-resend attack and information leakage can be avoided. The proposed protocol is like a conversion between two persons without the help of any third person with high-level security.  相似文献   

6.
An efficient bidirectional quantum secure communication protocol is proposed with two-photon entanglement. Compared with the previous protocol proposed by Shi et al., our protocol can achieve higher efficiency. Meanwhile, for the same length secret messages, only half of entangled photon pairs need to be prepared in our protocol. And the number of classical bits in public classical communication is also a half of that in the previous protocol. Moreover, the information leakage does not exist in our scheme.  相似文献   

7.
Very recently, the experimental demonstration of quantum secure direct communication (QSDC) with state-of-the-art atomic quantum memory has been reported (Zhang et al. in Phys Rev Lett 118:220501, 2017). Quantum dialogue (QD) falls under QSDC where the secrete messages are communicated simultaneously between two legitimate parties. The successful experimental demonstration of QSDC opens up the possibilities for practical implementation of QD protocols. Thus, it is necessary to analyze the practical security issues of QD protocols for future implementation. Since the very first proposal for QD by Nguyen (Phys Lett A 328:6–10, 2004), a large number of variants and extensions have been presented till date. However, all of those leak half of the secret bits to the adversary through classical communications of the measurement results. In this direction, motivated by the idea of Lo et al. (Phys Rev Lett 108:130503, 2012), we propose a measurement device-independent quantum dialogue scheme which is resistant to such information leakage as well as side-channel attacks. In the proposed protocol, Alice and Bob, two legitimate parties, are allowed to prepare the states only. The states are measured by an untrusted third party who may himself behave as an adversary. We show that our protocol is secure under this adversarial model. The current protocol does not require any quantum memory, and thus, it is inherently robust against memory attacks. Such robustness might not be guaranteed in the QSDC protocol with quantum memory (Zhang et al. 2017).  相似文献   

8.
A scheme is presented to implement bidirectional controlled quantum teleportation (QT) by using a five-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary single qubit state called qubit A to Bob and at the same time, Bob may also transmit an arbitrary single qubit state called qubit B to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional controlled QT protocol works. By using this bidirectional controlled teleportation, espcially, a bidirectional controlled quantum secure direct communication (QSDC) protocol, i.e., the so-called controlled quantum dialogue, is further investigated. Under the situation of insuring the security of the quantum channel, Alice (Bob) encodes a secret message directly on a sequence of qubit states and transmits them to Bob (Alice) supervised by Charlie. Especially, the qubits carrying the secret message do not need to be transmitted in quantum channel. At last, we show this QSDC scheme may be determinate and secure.  相似文献   

9.
Semiquantum communication permits a communication party with only limited quantum ability (i.e., “classical” ability) to communicate securely with a powerful quantum counterpart and will obtain a significant advantage in practice when the completely quantum world has not been built up. At present, various semiquantum schemes for key distribution, secret sharing and secure communication have been proposed. In a quantum dialogue (QD) scenario, two communicants mutually transmit their respective secret messages and may have equal power (such as two classical parties). Based on delegated quantum computation model, this work extends the original semiquantum model to the authenticated semiquantum dialogue (ASQD) protocols, where two “classical” participants can mutually transmit secret messages without any information leakage and quantum operations are securely delegated to a quantum server. To make the proposed ASQD protocols more practical, we assume that the quantum channel is a collective noise channel and the quantum server is untrusted. The security analysis shows that the proposed protocols are robust even when the delegated quantum server is a powerful adversary.  相似文献   

10.
In this paper, we propose two kinds of fault-tolerant asymmetric quantum dialogue (AQD) protocols and investigate the effect of collective noise on the proposed AQD protocols. In our work, logical qubits have been selected to build traveling blocks for constructing a decoherence-free subspace. Both communicants can encode each bit of secret message in the logical qubit with unitary logical operator. Compared with the previous quantum dialogue protocols, the proposed AQD protocols not only enable two users to transmit different amount of classical information to each other, but also can provide higher communication fidelity under the interference of collective noise. Furthermore, we will demonstrate the security of the AQD protocols against information leakage problem and Eve’s active eavesdropping attack.  相似文献   

11.
在量子信道中,粒子在传输过程中通常会受到噪声的影响,提出基于自对偶量子低密度校验码的量子对话协议来抵抗噪声攻击,使用B构造法和U构造法相结合的方法来构造自对偶量子低密度奇偶校验矩阵。所提量子对话协议能够抵抗常见的外部攻击,且不存在信息泄露,提高了编码和译码的效率。从纠错的角度研究所提量子对话协议的安全性,安全分析表明,该协议具有足够的安全性,能够有效抵御常见的恶意攻击。  相似文献   

12.
提出了一个基于团簇态的量子秘密共享方案,发送者通过Pauli操作将经典秘密信息编码在团簇态上进行分发,接收者通过联合测量实现秘密共享。协议插入EPR对作为诱骗态以防止窃听,通过安全性分析证明本协议是安全的,可以抵抗截获-测量、截获-重发和纠缠-测量攻击。此外,协议传输一个四粒子团簇态可以共享四个经典比特信息,量子比特效率达到100%。  相似文献   

13.
为提高效率,提出了一种直接共享经典信息的量子秘密共享协议。协议利用Pauli矩阵的特殊性质将经典信息编码在Bell态上实现秘密共享,为了检测是否存在窃听者,通过随机插入诱骗光子的方法确保传输的安全。分析表明该协议是安全的,效率可以达到1个Be11态共享2 bit经典信息。  相似文献   

14.
纠缠是一种重要的量子信息资源,Bell态、GHZ态等纠缠态被广泛用于量子秘密共享中。Borras等人发现的最大真六方纠缠态在任意的双方割之间具有最大的纠缠值,已经被证明可用于量子隐形传态,并表现良好的性质。通过分析Borras态的结构,利用广义Schmidt分解工具,构造了一个具体的量子秘密共享协议:事先在Alice和4个代理之间共享一个Borras纠缠态,Alice拥有其中2个qubit,代理们分别拥有它的1个qubit,则Alice可在代理间共享2bit经典信息。  相似文献   

15.
The general theory of three-party QSS protocols with the noisy quantum channels is discussed. When the particles are transmitted through the noisy quantum channels, the initial pure three-qubit tripartite entangled states would be changed into mixed states. We analyze the security of QSS protocols with the different kinds of three-qubit tripartite entangled states under phase-damping channels and figure out, for different kinds of initial states, the successful probabilities that Alice’s secret can be recovered by legal agents are different. Comparing with one recent QSS protocol based on GHZ states, our scheme is secure, and has a little smaller key rate than that of the recent protocol.  相似文献   

16.
基于身份的改进认证密钥协商协议   总被引:1,自引:0,他引:1       下载免费PDF全文
项顺伯 《计算机工程》2011,37(17):128-129
对基于身份的认证密钥协商协议进行安全性分析,指出其可能遭遇多余信息、伪装攻击和已知临时秘密泄漏攻击。为解决上述安全隐患,在原协议的基础上提出一种改进协议,并分析其非形式化下的安全性和协议运行效率。分析结果表明,改进的协议满足目前已知的所有密钥协商协议的安全性要求,具有较高的效率。  相似文献   

17.
Collins and Popescu realized a powerful analogy between several resources in classical and quantum information theory. The Collins?CPopescu analogy states that public classical communication, private classical communication, and secret key interact with one another somewhat similarly to the way that classical communication, quantum communication, and entanglement interact. This paper discusses the information-theoretic treatment of this analogy for the case of noisy quantum channels. We determine a capacity region for a quantum channel interacting with the noiseless resources of public classical communication, private classical communication, and secret key. We then compare this region with the classical-quantum-entanglement region from our prior efforts and explicitly observe the information-theoretic consequences of the strong correlations in entanglement and the lack of a super-dense coding protocol in the public-private-secret-key setting. The region simplifies for several realistic, physically-motivated channels such as entanglement-breaking channels, Hadamard channels, and quantum erasure channels, and we are able to compute and plot the region for several examples of these channels.  相似文献   

18.
量子秘密共享是量子密码研究的一个重要分支,针对多方共享量子比特情况进行研究,提出一个新的动态量子比特共享协议。此协议中,参与共享的成员是分等级的,量子信息的管理者在无需建立新的量子信道的情况下可对秘密重构系统中的参与者进行裁员。裁员后,管理者通过量子操作可以对量子信息进行更新,而剩余的有效参与者无需对自己手中的粒子执行额外操作就可完成新信息重构。此外,还讨论了协议的正确性、安全性及共享成员的等级性。  相似文献   

19.
为了简化多方量子秘密共享协议,利用Greenberger-Horne-Zeilinger(GHZ)态和互补基特性,提出了一种简单高效的多方量子秘密共享方案。该方案无需进行任何酉操作,发送方和多个接收方之间只需一次量子通信,并使用互补基进行测量即可完成信道安全检测和秘密共享。除去少量用于检测量子信道安全的粒子,其余每个GHZ态粒子共享一个比特的经典信息。安全性分析表明该方案是安全可靠的。  相似文献   

20.
A universal and general quantum simultaneous secret distribution(QSSD)protocol is put forward based on the properties of the one-dimensional high-level cluster states,in which one sender dispatches different high-level classical secret messages to many users at the same time.Due to the idea of quantum dense coding,the sender can send different two-dit classical messages(two d-level classical numbers)to different receivers simultaneously by using a one-dimensional d-level cluster state,which means that the information capacity is up to the maximal.To estimate the security of quantum channels,a new eavesdropping check strategy is put forward.Meanwhile,a new attack model,the general individual attack is proposed and analyzed.It is shown that the new eavesdropping check strategy can effectively prevent the traditional attacks including the general individual attack.In addition,multiparty quantum secret report(MQSR,the same as quantum simultaneous secret submission(QSSS))in which different users submit their different messages to one user simultaneously can be gotten if the QSSD protocol is changed a little.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号