首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《低温学》1987,27(8):437-438
A simple heat exchanger using silver powder for cooling pure liquid 3He is described. The temperature difference across the heat exchanger was less than 5μK at the superfluid transition of 3He with a thermal flux of 0.06 nW.  相似文献   

2.
A single-stage inline pulse tube refrigerator (PTR) with tapered slit-type heat exchangers utilized as the aftercooler and the cold end heat exchanger has been designed, fabricated and investigated. Simple energy conservation equation is applied for the design of the tapered slit-type heat exchangers with which the PTR is optimized. The air-cooled aftercoolers with different slit configurations have been compared in this paper with regard to its cooling capacity. The optimized PTRs driven by a single-piston linear compressor achieve the lowest temperature of 53.1 K and 53.5 K, and the cooling capacity of 3.0 W at 60 K and 3.5 W at 60 K, respectively. The result shows that the tapered slit-type heat exchangers can replace the mesh-type heat exchanger, but the geometric configuration of slits and the compressible volume should be carefully considered for optimum performance of the cooler.  相似文献   

3.
脉管制冷机冷端换热器的改进   总被引:1,自引:0,他引:1  
为了进一步提高脉管制冷机在液氮温区(77K)的制冷量,本文对脉管冷端换热器进行了改进,同时还对脉管冷端气流的平均温度进行了测量。实验结果表明,常规脉管制冷机冷端换热器中的换热面积是不足的,脉管制冷机冷端换热器的传热损失较大,在设计计算中不应忽视。采用高目数的换热器填料有利于降低脉管冷端壁面与冷端气体之间的温差,从而提高冷端换热器效率,进而提高液氮温区脉管制冷机效率。  相似文献   

4.
In this paper, thermoeconomic considerations are given to heat exchanger inventory allocation in irreversible refrigeration cycles and heat pumps with finite thermal capacitances. Investigation is made with respect to specified rate of cooling and heating for the refrigeration cycle and heat pump, respectively. Exact expressions are obtained without the use of an internal irreversibility parameter. The optimum hot-to cold-end unit cost ratio resulted in unequal division of heat exchanger conductances for the heat pump in contrast to the endoreversible case where they were the same. At a constant evaporator to condenser fluid temperature ratio, the COP of both refrigeration and heat pump systems was found to vary in an almost asymptotic manner in contrast to the endoreversible case where it was constant. In conclusion, it is best to measure the effect of internal dissipation by deriving exact mathematical expressions as the effect on some performance parameters could be lost due to the averaging effect of the internal irreversibility parameter.  相似文献   

5.
Kurt Uhlig 《低温学》2008,48(11-12):511-514
In the article, a 3He/4He dilution refrigerator (DR) is described which is pre-cooled by a commercial two-stage pulse tube refrigerator (PTR); cryo-liquids are not necessary with this type of milli-kelvin refrigerator. The simple design of the condensation stage of this so-called dry DR is novel and explained in detail. In most dry DRs the circulating 3He gas is cooled by a two-stage PTR to a temperature of about 4 K. In the next cooling step, the 3He flow is cooled and partially liquefied in a Joule–Thomson circuit, before it is run to the dilution refrigeration unit. The counterflow heat exchanger of the Joule–Thomson circuit is cooled by the cold 3He gas pumped from the still of the DR. In the DR described here, the heat exchanger of the Joule–Thomson stage was omitted entirely; in the present design, the 3He gas is cooled by the PTR in three different heat exchangers, with the first one mounted on the first stage of the PTR, the second one on the regenerator of the second stage, and the third one on the cold end of the second stage. The heat load caused by the 3He flow is mostly absorbed by the first two heat exchangers. Thus the 3He flow presents only a small heat load to the second stage of the PTR, which therefore operates close to its base temperature of 2.5 K at all times. A pre-cooling temperature of 2.5 K of the 3He flow is sufficiently low to run a DR without further pre-cooling. The simplified condensation system allows for a shorter, compacter and more economical design of the DR. Additionally, the pumping speed of the turbo pump is no longer obstructed by the counterflow heat exchanger of the Joule Thomson stage as in our earlier DR design.  相似文献   

6.
Mini-channel heat exchangers draw significant attention due to their capability of dissipating high flux heat in a relatively controllable way. The properties of heat transfer and instability of the parallel minichannel heat exchangers were investigated on orbit. The heat exchangers were installed as the evaporators of a two-phaseflow loop in the first Chinese cargo ship (TZ1). R134a was selected as working fluid of the loop. The heat exchangers were designed to be gravitydominated, with the channels’ cross section of 1 × 3 mm2, or larger. Small temperature fluctuation was found on the surface of one heat exchanger. It may be caused by the flow-rate fluctuation among the channels; and it could be more likely occur in microgravity. The necking at each entrance of the channels could suppress the fluid fluctuation inside the heat exchanger. For gravity-dominated channels, gravity plays a decisive role in the vapor-liquid distribution in the channels, which in turn affects the heat transfer coefficient of the heat exchanger.  相似文献   

7.
本文用新型无接触热阻全铝换热器对传统家用空调换热器进行了替代设计,利用空气焓值法对使用新型换热器和管片式换热器的家用窗式空调器进行对比试验,优化并测试了毛细管规格和制冷剂充灌量对新型换热器空调系统制冷性能的影响。研究结果表明:新型无接触热阻全铝换热器在换热面积减小37.53%时,制冷量反而提高3.59%,能效比EER提高7%。新型换热器有更强的换热能力,是目前家用空调换热器的理想替代产品。  相似文献   

8.
以具有间歇负荷特征的上海某科研办公楼为研究对象,对其冷却塔辅助冷却地埋管系统进行分析。计算建筑冷负荷和地埋管的放热量,7月份为一年中热泵系统运行最不利的时间段,针对地埋管单独运行和冷却塔辅助冷却2种方式,对比地埋管出口水温及热泵机组的EER。结果显示,该科研办公楼采用冷却塔辅助冷却方式后,地埋管出口水温明显降低,热泵机组的运行效率明显提升。  相似文献   

9.
改进冷端换热器的大功率脉冲管制冷机   总被引:1,自引:0,他引:1  
依据热力学非对称理论对脉冲管制冷机冷端的热力学过程进行分析,采用输出功率3 kW的压缩机在80 K时得到了35 W的制冷量,并提出了改进方案;搭建了单级低频大功率脉冲管制冷机的实验台,采用新型的填料烧结型换热器作为脉冲管的冷头.实验表明改进冷端换热器是提高脉冲管制冷机制冷效率的关键技术.  相似文献   

10.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

11.
3He/4He dilution refrigerators are widely used for applications requiring continuous cooling at temperatures below approximately 300 mK. Despite of the popularity of these devices in low temperature physics, the thermodynamic relations underlying the cooling mechanism of 3He/4He refrigerators are very often incorrectly used. Several thermodynamic models of dilution refrigeration have been published in the past, sometimes contradicting each other. These models are reviewed and compared with each other over a range of different 3He flow rates. In addition, a new numerical method for the calculation of a dilution refrigerator’s cooling power at arbitrary flow rates is presented. This method has been developed at CERN’s Central Cryogenic Laboratory. It can be extended to include many effects that cannot easily be accounted for by any of the other models, including the degradation of heat exchanger performance due to the limited number of step heat exchanger elements, which can be considerable for some designs. Finally, the limitations of applying the results obtained with idealized thermodynamic models to actual dilution refrigeration systems are discussed.  相似文献   

12.
除湿换热器可以同时处理显热与潜热负荷,但由于吸附热的影响,存在热湿负荷处理不同步及显热负荷处理能力不足的问题。本文提出了在除湿换热器后面串联一个显热换热器对空气进行二次处理,搭建了实验台对除湿换热器串联换热器情况下除湿降温过程的动态性能进行测试,并且在实验中分析了水温、进风温度、湿度、速度等主要参数对除湿量、降温量、制冷功率、COP的影响。结果表明:增加显热换热器可以大幅度增加处理空气的平均降温温差,在除湿初期阶段效果尤为明显,同时系统的制冷量也明显提高。此外,分析各参数对实验结果的影响可知,冷水温度与热水温度升高都可以有效提高系统制冷量与COP,空气的温湿度升高会提升系统性能,空气流速变慢对系统平均除湿量与有效除湿时间有明显的提升。  相似文献   

13.
This paper reports heat transfer results obtained during condensation of refrigerant propane inside a minichannel aluminium heat exchanger vertically mounted in an experimental setup simulating a water-to-water heat pump. The condenser was constructed of multiport minichannel aluminium tubes assembled as a shell-and-tube heat exchanger. Propane vapour entered the condenser tubes via the top end and exited sub-cooled from the bottom. Coolant water flowed upward on the shell-side. The heat transfer areas of the tube-side and the shell-side of the condenser were 0.941 m2 and 0.985 m2, respectively. The heat transfer rate between the two fluids was controlled by varying the evaporation temperature while the condensation temperature was fixed. The applied heat transfer rate was within 3900–9500 W for all tests. Experiments were performed at constant condensing temperatures of 30 °C, 40 °C and 50 °C, respectively. The cooling water flow rate was maintained at 11.90 l min−1 for all tests. De-superheating length, two-phase length, sub-cooling length, local heat transfer coefficients and average heat transfer coefficients of the condenser were calculated. The experimental heat transfer coefficients were compared with predictions from correlations found in the literature. The experimental heat transfer coefficients in the different regions were higher than those predicted by the available correlations.  相似文献   

14.
A dynamic-type of ice-making cold thermal energy storage system using water–oil emusion with silane-coupler agent was investigated. In order to establish a suitable method by which slurry ice can be formed continuously in a tube without ice adhesion to the cooling wall, the effects of the tube materials of the heat exchanger, heat exchanger types and phase change materials on ice formation process were investigated. Experiments of ice formation were operated under various cooling conditions of flow rate of the mixture and temperature of cooling brine. It was found that using a fluoroplastics tube prevented ice from adhering to the tube under a wide range of the cooling conditions. By making thickness of the tube thinner and increasing heat transfer coefficient on the outside of the tube, performance of heat exchanger as an ice-making equipment was improved. The range of the suitable cooling conditions by using the water–oil emulsion as a phase change material was wider than that by using ethylene glycol aqueous solution.  相似文献   

15.
本文设计了一台CO_2套管式气冷器并对其进行了换热特性的实验研究。该气冷器采用逆流三重套管,CO_2在内管流动,冷却水在内外管间流动。实验研究了不同CO_2质量流量、入口压力和冷却水温度对传热系数、换热量和换热器效能系数的影响。实验结果表明,随着CO_2质量流量的增加,传热系数和换热量均呈先增后减的趋势,换热器效能系数逐渐减小;CO_2质量流量不变时,传热系数、换热量和换热器效能系数均随气冷器CO_2入口压力的升高而逐渐增大;随着冷却水温度的升高,传热系数、换热量和换热器效能系数均逐渐减小。  相似文献   

16.
K. Wang  Y.L. Ju  X.S. Lu  A.Z. Gu 《低温学》2007,47(1):19-24
As key components in pulse tube refrigerators (PTRs), heat exchangers have great influence on the performance of the PTRs, especially the cold end heat exchangers which dominate the cooling effect between the cold gas and heat load. Filling copper screens are widely used to improve the performance of heat exchange and laminar flow. Whereas, the heat transfer rate of copper screens is still not good enough for the actual requirements of PTRs. Furthermore, the flow resistance of the copper screen is growing up quickly with the increase of screen mesh. In this paper, we propose a new type of copper foaming metal with high heat transfer area and low flow resistance in the heat exchanger instead of the copper screens. The heat transfer performances of the copper screens and the copper foaming metal are firstly compared by theoretical calculation, which shows that the performance of the copper foaming metal with 600 μm pore size is better than that of 20 and 80 mesh copper screens, verified by experimental results. A four valve pulse tube refrigerator (FVPTR) with copper foaming metal of 600 μm pore size as filling material of the heat exchanger achieved 69.5 K, 2.5 K lower than that of using 20 mesh copper screens, 1.7 K lower than that of using 80 mesh copper screens.  相似文献   

17.
A novel CO2 heat pump system was provided for use in fuel cell vehicles, when considering the heat exchanger arrangements. This cycle which had an inverter-controlled, electricity-driven compressor was applied to the automotive heat pump system for both cooling and heating. The cooling and heating loops consisted of a semi-hermetic compressor, supercritical pressure microchannel heat exchangers (a gas cooler and a cabin heater), a microchannel evaporator, an internal heat exchanger, an expansion valve and an accumulator. The performance characteristics of the CO2 heat pump system for fuel cell vehicles were analyzed by experiments. Results for steady and transient state performance were provided for various operating conditions. Furthermore, experiments to examine the arrangements of a radiator and an outdoor heat exchanger were carried out by changing their positions for both cooling and heating conditions. The arrangements of the radiator and the outdoor heat exchanger were tested to quantify cooling/heating effectiveness and mutual interference. The improvement of heating capacity and coefficient of performance (COP) of the CO2 heat pump system was up to 54% and 22%, respectively, when using preheated air through the radiator instead of cold ambient air. However, the cooling capacity quite decreased by 40–60% and the COP fairly decreased by 43–65%, for the new radiator-front arrangement.  相似文献   

18.
以R410A为制冷剂设计的一套小型家用风冷冷水机组。标准工况下,该机组的设计制冷量和制热量分别为16.5kW和18.0kW。在系统热力计算的基础上,介绍了以R410A为制冷剂的小型家用风冷冷水机组设备选型过程,选用了制冷量和制热量分别为16.89kW和19kW的全封闭涡旋式压缩机、实际总管长144m和实际传热面积70.24m2的翅片管式换热器作风侧换热器,板间距为0.0032m、单片传热面积为0.12m2的板式换热器作水侧换热器,毛细管作节流装置等。  相似文献   

19.
针对家用热泵空调器用的9.52 mm和7 mm双排室外换热器,在额定制冷制热工况下,利用仿真分析的方法研究流路数对换热器性能的影响,对9.52 mm换热器的流路的进一步优化,得到制冷制热综合性能更优的流路布置方式,并在整机上进行试验验证。结果表明,制冷剂侧压降对冷凝器和蒸发器的换热都有较大影响,特别是对较小管径的换热器;由于蒸发器中制冷剂侧压降较大,热泵空调器室外机用的换热器作冷凝器时对应的最佳流路数少于作蒸发器时的;适当增加过冷管数会进一步提高热泵空调器室外机换热器的综合换热能力;试验结果与仿真结果趋势大致相同。  相似文献   

20.
高压板翅式换热器冰堵现象,在煤化工空分设备中较为常见,其主要原因为空气增压机或膨胀机增压端冷却器冷却水泄漏。针对58000 m3/h内压缩流程空分设备高压板翅式换热器空气通道冰堵的故障现象,进行了详细分析,提出了相应的临时措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号