首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic cracking reaction and vaporization of gas oil droplets have significant effects on the gas solid mixture hydrodynamic and heat transfer phenomena in a fluid catalytic cracking (FCC) riser reactor. A three-dimensional computational fluid dynamic (CFD) model of the reactor has been developed considering three phase hydrodynamics, cracking reactions, heat and mass transfer as well as evaporation of the feed droplets into a gas solid flow. A hybrid Eulerian-Lagrangian method was applied to numerically simulate the vaporization of gas oil droplets and catalytic reactions in the gas-solid fluidized bed. The distributions of volume fraction of each phase, gas and catalyst velocities, gas and particle temperatures as well as gas oil vapor species were computed assuming six lump kinetic reactions in the gas phase. The developed model is capable of predicting coke formation and its effect on catalyst activity reduction. In this research, the catalyst deactivation coefficient was modeled as a function of catalyst particle residence time, in order to investigate the effects of catalyst deactivation on gas oil and gasoline concentrations along the reactor length. The simulation results showed that droplet vaporization and catalytic cracking reactions drastically impact riser hydrodynamics and heat transfer.  相似文献   

2.
Numerical simulation on the flow,heat transfer and cracking reactions in commercial fluid catalyticcracking(FCC)riser reactors were carried out employing the developed turbulent gas-solid two-phase flow-reac-tion model for FCC riser reactors given in Part Ⅰ of the present paper.Detailed information about the turbulentflow fields in the riser reactor obtained revealed the basic characteristics of the gas-solid two-phase turbulentflows when heat transfer and catalytic cracking reactions were co-existing in the riser.Results showed that thedistributions of the flow,the turbulence kinetic energy and the catalyst particle concentration are not uniform inthe axial,radial and tangential directions.The most complicated part of the riser reactor is the feed injectingzone.The complicated configuration of the turbulent gas-solid two-phase flows would exert a great influence onthe results of interphase heat transfer and cracking reactions.  相似文献   

3.
In the radiant section of cracking furnace, the thermal cracking process is highly coupled with turbulent flow, heat transfer and mass transfer. In this paper, a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme, combined with a comprehensive rigorous computational fluid dynamics(CFD) model. The eddy-dissipation-concept(EDC) model is introduced to deal with turbulence-chemistry interaction of cracking gas, especially for the multi-step radical kinetics. Considering the high aspect ratio and severe gradient phenomenon, numerical strategies such as grid resolution and refinement, stepping method and relaxation technique at different levels are employed to accelerate convergence. Large scale of radial nonuniformity in the vicinity of the tube wall is investigated. Spatial distributions of each radical reaction rate are first studied, and made it possible to identify the dominant elementary reactions. Additionally, a series of operating conditions including the feedstock feed rate, wall temperature profile and heat flux profile towards the reactor tubes are investigated. The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process.  相似文献   

4.
下行床反应器内催化裂化过程的CFD模拟   总被引:3,自引:1,他引:2  
郑雨  魏飞  金涌 《化工学报》2003,54(8):1078-1086
耦合湍流气粒多相流模型和催化裂化集总动力学模型,建立了描述下行床内多相流动和催化裂化过程的反应器数学模型,并利用计算流体力学单元模拟软件CFX4.3对下行床内的催化裂化过程进行了数值模拟及分析.模型能预测出在工业应用中反应器内最受关注的诸多参数,如固含率、相间滑移速度、压降、气固相的加速区以及各组分浓度的分布情况.预测结果表明,气相反应的进行将导致反应器内的气粒流动行为发生较大变化,充分考虑反应与流动行为的耦合十分重要;而反应器床径的增大将导致转化率和各产物收率的下降.  相似文献   

5.
Z. Abu El-Rub  E.A. Bramer  G. Brem   《Fuel》2008,87(10-11):2243-2252
In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed tubular reactor at a temperature range of 700–900 °C under atmospheric pressure and a gas residence time in the empty catalyst bed of 0.3 s. Biomass chars are compared with calcined dolomite, olivine, used fluid catalytic cracking (FCC) catalyst, biomass ash and commercial nickel catalyst. The conversion of naphthalene and phenol over these catalysts was carried out in the atmosphere of CO2 and steam. At 900 °C, the conversion of phenol was dominated by thermal cracking whereas naphthalene conversion was dominated by catalytic conversion. Biomass chars gave the highest naphthalene conversion among the low cost catalysts used for tar removal. Further, biomass char is produced continuously during the gasification process, while the other catalysts undergo deactivation. A simple first order kinetic model is used to describe the naphthalene conversion with biomass char.  相似文献   

6.
半焦基催化剂裂解煤热解产物提高油气品质   总被引:10,自引:0,他引:10       下载免费PDF全文
利用上段热解下段催化的两段固定床反应器,针对府谷煤研究了半焦和半焦负载Co催化剂对煤热解产物的催化裂解效果。结果表明,半焦和半焦负载钴对热解产物催化裂解后,热解气收率增加,焦油收率降低,但焦油中沸点低于360℃的轻质组分含量提高,轻质焦油收率基本保持不变或略有增加。与煤在600℃直接热解相比,在热解和催化温度均为600℃,采用煤样质量20%的半焦为催化剂时焦油中轻质组分质量含量提高了约25%,轻质组分收率基本不变,热解气体积收率增加了31.2%;在热解温度600℃,催化温度500℃时,采用煤样质量5%的半焦负载钴催化剂,焦油中轻质组分质量收率和含量分别提高了约8.8%和28.8%,热解气体积收率增加了21.5%。煤热解产物的二次催化裂解的总体效果是将焦油中重质组分转化为轻质焦油和热解气。  相似文献   

7.
在提升管气固两相湍流流动模型和重油反应动力学集总模型的基础上,利用Fluent软件建立了催化裂化提升管反应器气固两相流动与反应耦合模型,对实验室小型提升管反应器进行了数值模拟,考察了气固两相的流动、传热、传质与反应过程。结果表明,提升管反应器内气固两相在轴向和径向的流动、传热与反应的分布不均匀。在入口附近。原料和催化剂温度变化显著,各组分的浓度变化剧烈,在提升管上部,变化平缓。反应器出口各组分质量分数的模拟值和实验值基本吻合。说明该模型对提升管反应器出口参数和反应结果具有较好的预测性。  相似文献   

8.
For C4 hydrocarbons from heavy oil catalytic pyrolysis, the cracking behaviours on catalyst CEP‐1 and quartz sand were investigated in a confined fluidized bed reactor. C4 hydrocarbons show a good cracking ability on CEP‐1, and butene is easier to convert than butane. Only at high reaction temperatures can butane present a good cracking ability. On catalyst CEP‐1, C4 hydrocarbons can undergo not only cracking reactions, but also such reactions as hydrogen transfer, polymerization and aromatization. The conversion of C4 hydrocarbons thermal pyrolysis is high, indicating that free radical reactions play an important part in the secondary cracking of C4 hydrocarbons. The product yields of C4 hydrocarbons pyrolysis on quartz sand are usually lower than those on catalyst CEP‐1. For both catalytic pyrolysis and thermal pyrolysis of C4 hydrocarbons, the selectivity of propene is higher than that of ethene.  相似文献   

9.
Downer reactor, in which gas and solids move downward co-currently, has unique features such as the plug-flow reactor performance and relatively uniform flow structure compared to other gas-solids fluidized bed reactors, e.g., bubbling bed, turbulent bed and riser. Downer is therefore acknowledged as a novel multiphase flow reactor with great potential in high-severity operated processes, such as the high temperature, ultra-short contact time reactions with the intermediates as the desired products. Typical process developments in industry have directed to (1) the new-generation refinery process for cracking of heavier feedstock to gasoline and light olefins (e.g., propylene) as by-products; and (2) coal pyrolysis in hydrogen plasma which opens up a direct means for producing acetylene, i.e., a new route to synthesize chemicals from a clean coal utilization process. This paper is to give a comprehensive review on the development of fundamental researches on downer reactors as well as the particular industrial demonstrations for the fluid catalytic cracking (FCC) of heavy oils and coal pyrolysis in thermal plasma.  相似文献   

10.
11.
董丽 《化工进展》2013,32(7):1526-1533
对目前利用生物质生产芳烃几种路线以及研究进展进行评述。介绍了前景较好的代表性工艺,如:Anellotech公司开发的生物质热解制芳烃(Bio-AromaticsTM)工艺、Virent公司开发的生物基氢解糖类经过催化转化制PX(Bio-FormingTM)工艺以及Gevo公司开发的生物质异丁醇制芳烃工艺,并详细分析了各工艺的原料来源、工艺流程、工艺条件等特点。分析几种生物质芳烃工艺生产成本,并对照传统石脑油裂解重整制芳烃生产成本,分析各工艺经济性后,得出结论:Anellotech公司开发的生物质热解制芳烃工艺经济性成本与经济性最佳。在此基础上,提出今后生物质制芳烃的研究应当以提高原料利用效率、增加芳烃产率和选择性为重点,开发适合生物质转化反应的催化剂和反应器。  相似文献   

12.
Yoshikage Ohmukai  Isao Hasegawa  Kazuhiro Mae 《Fuel》2008,87(13-14):3105-3111
A shaft kiln is considered to be a promising pyrolysis device for the efficient decomposition of municipal wastes. In this device, the temperature distributions of the gas and solid phases can be separately controlled, thereby leading to considerably different profiles for both the phases. The temperature controllability in a shaft kiln helps us to obtain a suitable profile of the gas-phase temperature for the decomposition of tar that evolves from the solid phase. By leveraging this advantage of the shaft kiln, we performed further pyrolysis and steam reforming of the volatiles formed from the pyrolysis of biomass and several polymers using a two-stage reactor that was maintained at different temperatures. The amount of tar decreased with an increase in the temperature in the upper reactor in the absence of a catalyst. By using the experimental results, we developed a lumped kinetic model for secondary gas-phase reactions and performed a kinetic analysis of the reactions that proceeded in the upper reactor. It is confirmed that the simulation model is successful in reproducing the product distribution of the gas-phase reactions of volatiles from biomass and polymers.  相似文献   

13.
在现有生物质气化反应器及焦油处理方法的基础上,开发出一种整体式新型生物质气化催化反应器,并对该反应器进行相关的实验研究。实验研究结果表明:当木粉进料速率为6.48 g/min,空燃比RE为0.23,气化温度在500—670℃,这种整体式新型生物质气化催化反应器内有、无催化剂时对木粉气化产生的燃气中焦油的含量以及气体组分有明显影响;当采用钴与氧化钴的质量分数为20%,氧化钙的质量分数为80%的钴基催化剂作为焦油裂解催化剂,裂解温度为800℃,标态下体积空时为1.8 s的情况下,燃气中夹带的焦油可完全被催化裂解,同时燃气中的气体成分氢体积分数可从无催化剂时的15%提高到有催化剂时的35%,净提高20%。同时也对使用前后的钴基催化剂进行了XRD表征分析,发现氧化钙在生物质气化过程中具有一定的CO2捕集能力。  相似文献   

14.
分别以碱及碱土金属、过渡金属以及稀土金属3种常见助剂类型,探讨了不同助剂对镍基催化剂催化生物质裂解及气化重整制氢催化活性、催化剂物化特性及催化剂失活特性的影响。添加碱金属组分后,生物质热解反应速率会大幅上升,生物质焦的水蒸气气化反应得到促进,并且达到最大热解速率所需的温度也有所降低,热解产物趋向于小分子量产物;过渡金属对生物质气化过程中生成焦油的催化裂解重整具有较好的催化活性;稀土元素对甲醇水蒸气重整等催化反应有着重要的作用,镍基催化剂中加入Ce和Pr能提高甲醇转化率、改善产气组分、提高H2的选择性。结合国内外的研究情况发现钴、镧等金属助剂有利于提升镍基催化剂重整制氢活性,催化剂积炭及表面活性颗粒的聚集是造成催化剂失活的主要原因。  相似文献   

15.
An approach for biomass flash pyrolysis in a circulating fluid bed (CFB) reactor with continuous solids regeneration is described in this study. The unit is capable of performing conventional and catalytic biomass pyrolysis with the proper solid selection. The production of improved quality liquid products in a direct step through catalytic pyrolysis is investigated in this work. Both conventional and catalytic biomass pyrolysis can be effectively performed in this CFB unit. Flash pyrolysis conditions were achieved and liquid product yields of ∼70 wt% (on biomass feed) were obtained. The effect of specific operating variables including the type of inorganic solid material and the solid/biomass ratio was established on the final liquid product quality and yield. Solid materials considered included silica sand, a commercial fluid catalytic cracking catalyst and a ZSM-5 additive. Catalytic biomass pyrolysis generally leads to the production of additional water, coke and gases compared to conventional pyrolysis. However, the obtained liquid product quality and composition is improved.  相似文献   

16.
随着环保法规的日益严格和成品油质量标准的持续升级,对催化裂化/裂解过程的产品要求和控制逐渐精细到分子级别,可靠的分子尺度反应动力学模型是实现催化裂化/裂解过程分子管理的关键所在。本文简述了催化裂化/裂解的反应机理和反应类型,回顾了近三十年来不同方法对催化裂化/裂解过程反应网络和分子尺度反应动力学模型构建的研究进展。重点对不同模型构建技术的优缺点进行了详细的对比分析,指出了催化裂化/裂解过程分子尺度反应动力学模型构建的研究方向:开发更为精细的石油分子分析表征技术,构建与催化剂失活和反应器模型相结合的分子尺度反应动力学模型,实现基于分子管理的催化裂化/裂解过程反应器设计和工艺工程放大。此外,指出建立对分子集构建、反应网络构建和动力学参数求解的集成化平台是分子尺度反应动力学发展的必然趋势。  相似文献   

17.
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model.  相似文献   

18.
Computational fluid dynamics is becoming an important tool in the study of chemical engineering processes and apparatuses (in particular, the share of works with the application of this method is nearly 6% of the total number of all chemical engineering works issued by Elsevier Science Publishers in 2010). The possibilities of computational fluid dynamics are demonstrated using examples from three different chemical engineering fields: developing a method for loading a tubular reactor for the steam conversion of natural gas, studying heat transfer in a reactor for the hydrogenation of vegetable oils upon the replacement of a catalyst, and investigating the transitional processes in an automobile neutralizer. The results from computational fluid dynamics are verified by comparing them with experimental data in developing a method for loading a tubular reactor, using the problem of decelerating a catalyst particle with a flow of air as an example. The obtained data are compared with classical measurement data on the aerodynamic drag of a ball and a cylinder and represent the further development of works on the flow around particles of complex shape. In this work, the results from inspecting a reactor for the hydrogenation of oils with allowance for the possible heating and uniform distribution of a flow before its entering the catalyst bed are presented. It is shown that the construction of the reactor does not ensure homogeneity of the reaction flow at the desired level and requires modification of heating elements. The efficiency of computational fluid dynamics for investigating fast processes with a chemical reaction is exemplified by studying the transitional processes in an catalytic automobile neutralizer (the effect of flow dynamics and heat transfer on the thermal regime in a honeycomb catalyst particle is very difficult to study by experimental methods). The application of computational fluid dynamics allows us to reduce considerably the time and cost of developing and optimizing the designs of efficient catalytic fixed-, fluidized-, or moving-bed reactors (particularly multiphase stirred (slurry) reactors), along with mixers, adsorbers, bubblers, and other chemical engineering apparatuses with moving media.  相似文献   

19.
Trickle‐bed reactors (TBRs), which accommodate the flow of gas and liquid phases through packed beds of catalysts, host a variety of gas–liquid–solid catalytic reactions, particularly in the petroleum/petrochemical industry. The multiphase flow hydrodynamics in TBRs are complex and directly affect the overall reactor performance in terms of reactant conversion and product yield and selectivity. Non‐ideal flow behaviours, such as flow maldistribution, channelling or partial catalyst wetting may significantly reduce the effectiveness of the reactor. However, conventional TBR modelling approaches cannot properly account for these non‐ideal behaviours owing to the complex coupling between fluid dynamics and chemical kinetics. Recent advances in the application of computational fluid dynamics (CFD) to three‐phase TBR systems have shown promise of achieving a deeper understanding of the interactions between multiphase fluid dynamics and chemical reactions. This study is intended to give a state‐of‐the‐art overview of the progress achieved in the field of CFD simulation of TBRs over the past two decades. The fundamental modelling framework of multiphase flow in TBRs, advances in important constitutive models, and the application of CFD models are discussed in detail. Directions for future research are suggested.  相似文献   

20.
An efficient biomass pyrolysis process requires a comprehensive understanding of the chemical and physical phenomena that occur at multi-length and time scales. In this study, a multiscale computational approach was developed and validated for biomass pyrolysis in a packed-bed reactor by integrating pyrolysis kinetics, a particle scale model, and Superquadric Discrete Element Method-Computational Fluid Dynamics (SuperDEM-CFD) in open-source code MFiX. A one-dimensional particle–scale model that discretizes the characteristic length of biomass particle into layers was developed to predict the intraparticle phenomena inside a single particle. The 1D model was validated by comparing it with a single biomass particle pyrolysis experiment. A recently developed SuperDEM-CFD model was employed to simulate the non-spherical particle–particle contact and fluid-particle interaction. The coupled model was applied to simulate the pyrolysis of cubic biomass particles in a packed bed and validated by comparing with experimental data. Simulation with and without particle–scale model was compared, and the effect of the gas–solid heat transfer models was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号