首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is in line with two previous studies by the same authors on gas injection in yield stress fluids. Gas is injected toward the bottom wall of a prismatic tank containing a yield stress fluid. When rising toward the free surface, trains of bubbles generate fluid recirculation in the tank. Two experimental colorimetric methods are introduced and validated in order to quantify the recirculation liquid flow rate as well as the time evolution of the extent and shape of the mixed volume. The influences of the injection flow rate, fluid rheology, and reactor size have been quantified. Correlations based on the characteristic nondimensional numbers of the flow have been developed to predict the downward liquid flow rate as well as the mixed volume. A model for estimating the mixing time is also developed and compared to experimental results.  相似文献   

2.
Mixing of viscous non-Newtonian fluids plays an important role in many industrial processes (wastewater treatment, methanization, etc.). In some cases, mixing by gas injection can be more interesting than mechanical mixing. The present study focuses on the gas injection in yield stress fluids. The influence of the air flow rate, fluid rheological properties, and geometrical configuration on an air jet impinging the bottom wall of a tank containing a yield stress fluid has been considered. Focus has been placed on the air cavity present at the injection point. The trends of two key parameters of the cavity have been characterized: its maximum diameter and frequency detachment. Correlations based on the characteristic dimensionless numbers governing the flow have been derived. These correlations show that the apparent viscosity has an effect on the cavity's frequency but a low influence on its diameter which is mainly governed by the air flow inertia.  相似文献   

3.
Flow mixing of a non‐Newtonian fluid in a stirred tank equipped with a side‐entry impeller was observed using particle image velocimetry (PIV). The effects of some geometrical parameters including the mixer shape and impeller type and position on the flow pattern were studied on velocity fields obtained at different locations inside the mixing domain. The different flow structures revealed that the ratio of inertial and viscous forces largely defines the flow pattern. Dead zones were observed inside the tank due to the rheological properties of the fluid. The size of the dynamic regions and the average velocity near the impeller were enhanced by increasing the suction area. Likewise, large pitch ratios were found to improve the active mixing zone and the axial discharge. Curves for the power and pumping numbers are reported for different axial flow impellers. © 2013 American Institute of Chemical Engineers AIChE J, 60: 1156–1167, 2014  相似文献   

4.
The packaging or filling of a container with a non‐Newtonian fluid without quality failures is a current issue encountered at the final step of industrial product processes. In this work, the container filling of viscoplastic fluids is studied using an experimental laboratory plant able to reproduce the industrial transitory packaging conditions. First, a Newtonian validation was conducted to compare and to confirm our setup results with available literature data. Second five flow patterns including dripping, jet buckling, mounding, planar filling, and air entrainment were observed and characterized for the viscoplastic container filling. Most of them present different types of instabilities during the filling, except the planar filling, which seems to be ideal according to industrial specifications. A flow pattern distribution depending on relevant dimensionless numbers was developed. Finally, flow pattern transition criteria are determined highlighting the influence of rheological and process parameters on container filling. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1117–1126, 2018  相似文献   

5.
The strategic approach of this article is to characterize the continuous-flow mixing of pseudoplastic fluids possessing yield stress in a stirred reactor with the Maxblend impeller. Dynamic experiments were carried out through the frequency-modulated random binary input of a brine solution to determine the extent of non-ideal flows. Mixing quality was determined on the basis of the extent of channeling and fully mixed volume. The effects of important parameters such as impeller speed (25–500 rpm), absence of baffles, fluid rheology (0.5–1.5%), fluid flow rate (3.20–14.17 L min−1), and the locations of inlet/outlet on the dynamic performance of the continuous-flow mixing vessel were explored. The performance of the Maxblend impeller was then compared to the performances of various types of impellers such as close-clearance (an anchor), axial-flow (a Lightnin A320), and radial-flow (a Scaba 6SRGT) impellers. It was found when the channeling approached zero and the fully mixed volume approached the total fluid volume in the vessel, the power drawn by the A320 impeller and the Scaba impeller were about 2.9 and 4.3 times greater than that of the Maxblend impeller. Thus, the Maxblend impeller was able to drastically improve the performance of continuous-flow mixing with huge power savings. The mixing quality was further improved by optimizing the impeller speed, decreasing the fluid flow rate, decreasing the fluid concentration, and using bottom inlet- top outlet configuration. The flow non-ideality of the mixing system increased in the absence of the baffles. Thus, better mixing quality and more energy savings can be achieved by employing the findings of this study.  相似文献   

6.
屈服应力型流体(YSFs)是一种典型的非牛顿流体,因其丰富的流变特性被广泛关注。屈服应力是高浓度的粒子分散系统和凝胶状物质(多相乳液、微胶囊、3D打印复杂结构、药物输送凝胶等)的基本特征。本文对微通道内简单屈服应力型流体的流动特征和流变行为,及其流变性对多相流系统的影响进行了综述,剖析了受限空间内流体流动与流体流变性,及多相流动力学和界面现象的耦合机制,并对亟需推进的研究方向进行了展望。为微通道内屈服应力型流体的数值模拟、实验研究和应用提供参考。  相似文献   

7.
Prediction of cavern formation in yield stress fluids in stirred tanks is of great importance for optimization. A new torus model is developed and then validated by experimental data and computational fluid dynamics simulation. Unlike existing mathematical models, the new torus model assumes that the circular center of the torus should not be outside the impeller swept region as the Reynolds number (Re) increases. Hence the cavern boundary is shaped like an apple torus rather than a horn torus. The new model also considers the cavern‐vessel interactions. At relatively high Re, the new model predicts cavern shape and size better than other models. It correctly captures the cavern outline at various Re, which verified the assumption about torus center. The new model is then used to identify the influence of rheological parameters on cavern formation, and further extended to the cavern prediction of the dual‐impeller system. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3057–3070, 2014  相似文献   

8.
孙靖晨  刘海龙  王军锋  何发超 《化工进展》2021,40(12):6547-6556
在层流搅拌中,搅拌桨的周期性扰动使搅拌槽内出现封闭、孤立的环状隔离流场。隔离流场严重阻碍了搅拌介质之间的有效交换,降低了搅拌效率。本文提出外加电场以强化层流搅拌的方案,利用电流体动力学效应改变流场的对称结构,消除混合死区。试验采用平面激光诱导荧光(planner laser induced fluorescence, PLIF)技术实现了搅拌槽内流场结构的实时可视化,并通过自编程程序识别并计算出非混合区域面积百分比。结果表明,随着电场强度的增大,混合效率逐渐提升,当电场强度为1.5kV/cm时混合效率可达98%。研究建立了基于有限元法及浓度扩散模型的混合搅拌模拟平台,探究搅拌槽内部流场结构时空演变规律。通过模拟分析发现,当外加平行板电场强度达到0.5kV/cm以上时,搅拌槽内部出现明显的二次涡流。二次涡流的出现与径向混合相互作用从而不断削弱隔离流场。在电场强度不变的条件下,外加周期性电场可以进一步提高搅拌效率,电场强度1kV/cm条件下的外加周期性电场可以使搅拌效率提升至98%以上。  相似文献   

9.
The laminar flow in an impinging jet contactor is examined as a first step toward the development of new technology for fast mixing of viscous fluids. The flow, velocity, and stretching fields in an impinging jet contactor are quantified for low Reynolds number flow using three-dimensional numerical simulations and particle image velocimetry measurements. Computational and experimental velocity fields are in close agreement, as quantified by the velocity probability density functions. Two steady-state flow regimes are found to exist: for jet Reynolds numbers (Rej) < 10, the jets do not impinge and the velocity field scales linearly with Reynolds number; for Rej > 10, the jets begin to impinge and recirculation regions form above and below the impingement point. The magnitude of the rate-of-strain tensor is calculated as a function of Rej. While areas of essentially zero stretching occupy most of the flow domain, very high rates of stretching occur at specific locations in the flow. The maximum and average rates of stretching in the contactor increase roughly linearly as a function of Reynolds number. Mixing simulations show that no mixing occurs for the steady flow in a symmetric-jet contactor. However, mixing is improved substantially by a slight modification of the impinging jet geometry that disrupts geometric symmetry.  相似文献   

10.
The 3D flow field generated by a Scaba 6SRGT impeller in the agitation of xanthan gum, a pseudoplastic fluid with yield stress, was simulated using the commercial CFD package. The flow was modeled as laminar and a multiple reference frame (MRF) approach was used to solve the discretized equations of motion. The velocity profiles predicted by the simulation agreed well with those measured using ultrasonic Doppler velocimetry, a non-invasive fluid flow measurement technique for opaque systems. Using computed velocity profiles across the impeller, the effect of fluid rheology on the impeller flow number was investigated. The validated CFD model provided useful information regarding the formation of cavern around the impeller in the mixing of yield stress fluids and the size of cavern predicted by the CFD model was in good agreement with that calculated using Elson's model.  相似文献   

11.
Electrical resistance tomography (ERT) provides a non-intrusive technique to examine, in three dimensions, the homogeneity and flow pattern inside the mixing tank. In this study, a 4-plane 16-sensor ring ERT system was employed to study the shape and the size of cavern generated around a radial-flow Scaba 6SRGT impeller in the mixing of xanthan gum solution, which is a pseudoplastic fluid possessing yield stress. The size of cavern measured using ERT was in good agreement with that calculated using Elson's model (cylindrical model). The 3D flow field generated by the impeller in the agitation of xanthan gum was also simulated using the commercial computational fluid dynamics (CFD) package (Fluent). The CFD model provided useful information regarding the impeller pumping capacity, flow pattern, and the formation of cavern around the impeller. CFD results showed good agreement with the experimental data and theory.  相似文献   

12.
Aerated stirred vessels are commonly employed to enhance gas dispersion. However, the associated high energy consumption is a challenging feature, particularly when dealing with complex non-Newtonian fluids. Coaxial mixers comprising a central impeller and a close-clearance impeller have emerged as an energy-efficient alternative that effectively intensifies gas dispersion. Hence, the objective of this study is to investigate the effect of aeration and agitation on the gas dispersion effectiveness of a coaxial mixer containing a yield-pseudoplastic fluid. An anchor-pitched blade turbine was employed to disperse air into a 1 wt.% xanthan gum solution, and the analysis primarily focused on characterizing the gas holdup and fluid flow behaviour. Gas holdup data were obtained experimentally using electrical resistance tomography (ERT), while computational fluid dynamics (CFD) simulations provided a detailed analysis of fluid flow patterns within the coaxial mixer. The rotational speed of the impeller exhibited a non-monotonic effect on the gas holdup, and a significant influence of the interaction between variables was identified. For instance, the experimental data showed that the aeration effect varied with the anchor speed. Nevertheless, the variables' interaction effect was explained by the change in flow pattern observed numerically. Furthermore, the CFD results demonstrated that high gas holdup does not necessarily indicate intensified mixing. Therefore, combining experimental data and numerical simulations enables a more accurate characterization of mixing performance. These findings contribute to the understanding and improvement of mixing performance in such a complex system, which is crucial for designing efficient operations.  相似文献   

13.
For the practical applications of droplet‐based microfluidics, we have paid special attention to the complex hydrodynamics and mixing performance inside microdroplets and the profound process intensification when forcing the droplets to move in winding channels. In this work, experimental studies using micro laser induced fluorescence (μ‐LIF) technique and three‐dimensional simulation based on a multiphase, multicomponents lattice Boltzmann model approach were adopted. The simulation results clearly revealed that the mixing inside the droplet is due to the convection in symmetric vortices in the two hemispheres of the droplet and the diffusion between them. They also showed the fluids inside the droplet could be reoriented due to the winding effect. Three designs of winding channels were studied, where interesting results showed the similar effect of process intensification by breaking up the flow symmetry. The revealed flow mechanism and the mixing performance inside the droplet in droplet‐based microfluidics should be helpful for microdevice design and optimization. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1801–1813, 2013  相似文献   

14.
An attempt has been made to study the mixing of yield‐pseudoplastic fluids with a Scaba 6SRGT impeller using electrical resistance tomography (ERT) and computational fluid dynamics (CFD). The ERT system with four sensor planes, each containing 16 equispaced stainless steel electrodes, was used to measure the mixing time. The multiple reference frames (MRF) technique and the modified Herschel–Bulkley model were applied to simulate the impeller rotation and the rheological behaviour of the non‐Newtonian fluids, respectively. To validate the model, the CFD results for the power consumption were compared to the experimental data. The validated model was then employed to obtain further information regarding the averaged impeller shear rate, impeller circulation, and pumping capacities. The CFD and ERT data were utilised to investigate the effect of the impeller power, fluid rheology, and impeller size on the mixing time. The mixing time results obtained in this study were in good agreement with those reported in the literature. © 2011 Canadian Society for Chemical Engineering  相似文献   

15.
The influence of viscoplastic rheological features on the Rayleigh‐Bénard convection is investigated by numerical means in order to compare with first experimental results given by Darbouli et al. The fluid is modeled by a regularized Herschel‐Bulkley law which is often used to fit numerous pasty fluids. Natural convection in a two‐dimensional square cavity heated from below is considered. Critical values of Oldroyd number Od and yield number Y are provided. Numerical results highlight a stabilizing effect of the yield stress as well as a destabilizing effect of increasing shear‐thinning coefficient n as the increase in n enhances the heat transfer in the range of our calculations. Unyielded regions are located in the square corners of the cavity and in the cavity where convection occurs. The unyielded zones size increases with the increase in Od and can invade all the cavity for sufficiently large values of Od. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1347–1355, 2016  相似文献   

16.
Dynamic behavior of the flow field in a Reaction Injection Molding, RIM, machine mixing chamber, having dimensions typically used in industrial machines, is studied from dynamic velocity data of Laser Doppler Anemometry, LDA, measurements and Computational Fluid Dynamics, CFD, simulations with a 2D model. This study is based on the spectral analysis of the dynamic flow field data. The typical frequencies, in the reactor flow field, are identified and its values are related to the identified flow structures. The differences between the typical frequencies from experiments and simulations are observed and justified on the basis of the 2D representation of a 3D cylindrical geometry. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

17.
This experimental study focuses on the creeping flow of a shear thinning yield stress fluid around conical obstacles. The flow has been analyzed in steady state and with adherence conditions. Firstly, the influences of the cone apex angle and of the Oldroyd number, that is the ratio between plastic and viscous effects, on the drag coefficient have been analyzed. Correlations have been proposed to model the evolution of this coefficient as a function of these two parameters. The analysis provides a new alternative for measuring the yield stress. Then, the kinematic fields around the cones have been analyzed. These fields enable to describe the rigid zones and the sheared zone developing around the lateral edge of the cones as a function of the cone apex angle. Moreover, the wall shear stresses estimated from the particle image velocimetry measurements have enabled to quantify the contribution of the lateral drag force in the drag force. © 2014 American Institute of Chemical Engineers AIChE J, 61: 709–717, 2015  相似文献   

18.
大桩距水泥搅拌桩复合地基桩土应力试验   总被引:2,自引:0,他引:2  
通过对复合地基静载荷试验和桩土应力比测试 ,对软土地基上某住宅小区设计的大桩距水泥搅拌桩复合地基的承载性状和桩土应力比进行全面探讨 ,为大桩距水泥搅拌桩在软基上的设计应用提供了可靠的资料和经验。  相似文献   

19.
韩发年  闫志勇 《化工进展》2015,34(12):4151-4157
氨法选择性催化还原技术(SCR)因其优良的综合性能而成为工程应用最为广泛的烟气脱硝工艺,而反应器横截面上混合气体流场均匀性优劣是高效烟气脱硝的重要影响因素。本文简述了SCR烟气脱硝系统基本原理和NH3/NOx混合效率指标;综述了线性控制式、分区控制式和混合型喷氨格栅等几种工程应用上主流技术及其最新研究成果,并分析了各气体流场均匀性调节技术的优缺点;最后指出氨喷射混合装置未来的发展趋势:①优先选用混合型喷氨格栅,分区控制式喷氨格栅和线性控制式喷氨格栅分别次之;②喷氨混合装置设计时重点寻求降低浓度不均匀系数的可行性;③研发简易、高能和稳定的静态混合结构,降低建设和运行成本,提高操作弹性;④完善还原剂氨喷射效应和喷氨量现代控制理论。  相似文献   

20.
The drag of a cylindrical obstacle moving at a constant velocity in a yield stress fluid close to a wall is studied experimentally and numerically. The wall influence has been explored for gap values between the cylinder of diameter D and the wall ranging from 0.01D to 100D, which corresponds, respectively, to hydrodynamic lubrication and to unconfined domain conditions. A model yield stress fluid (Carbopol gel) is used in the experiments. The viscous and plastic drag coefficients have been calculated and measured as depending on the Oldroyd number, in conditions where the yield stress effects are more important than those of viscosity and the inertia negligible. We have performed experimental and numerical validations in the Newtonian case and provided more specifically comparisons of our measured data on yield stress materials with those resulting from viscoplastic flow simulations. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4118–4130, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号