首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article deals with systematic development of linear model predictive control algorithms for linear transport‐reaction models emerging from chemical engineering practice. The finite‐horizon constrained optimal control problems are addressed for the systems varying from the convection dominated models described by hyperbolic partial differential equations (PDEs) to the diffusion models described by parabolic PDEs. The novelty of the design procedure lies in the fact that spatial discretization and/or any other type of spatial approximation of the process model plant is not considered and the system is completely captured with the proposed Cayley‐Tustin transformation, which maps a plant model from a continuous to a discrete state space setting. The issues of optimality and constrained stabilization are addressed within the controller design setting leading to the finite constrained quadratic regulator problem, which is easily realized and is no more computationally intensive than the existing algorithms. The methodology is demonstrated for examples of hyperbolic/parabolic PDEs. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2644–2659, 2017  相似文献   

2.
3.
This work focuses on the design of stochastic Lyapunov‐based economic model predictive control (SLEMPC) systems for a broad class of stochastic nonlinear systems with input constraints. Under the assumption of stabilizability of the origin of the stochastic nonlinear system via a stochastic Lyapunov‐based control law, an economic model predictive controller is proposed that utilizes suitable constraints based on the stochastic Lyapunov‐based controller to ensure economic optimality, feasibility and stability in probability in a well‐characterized region of the state‐space surrounding the origin. A chemical process example is used to illustrate the application of the approach and demonstrate its economic benefits with respect to an EMPC scheme that treats the disturbances in a deterministic, bounded manner. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3312–3322, 2018  相似文献   

4.
APPLICATION OF FUZZY ADAPTIVE CONTROLLER IN NONLINEAR PROCESS CONTROL   总被引:1,自引:0,他引:1  
In general, physical processes are usually nonlinear and control system design based on the linearization technique cannot control the process well for a wide range of operation. Use of the variable transformation method may not always solve the problem. In this paper, a fuzzy adaptive controller is proposed to control the nonlinear process. The CSTR control problem has also been considered. The results are compared with the method of nonlinear model predictive control (NMPC) with constrained and unconstrained control variables. A fuzzy model-following control system scheme is also proposed. The results show that the proposed controller is a feasible control structure for a nonlinear or parameter-variations process control.  相似文献   

5.
针对非线性程度较高的系统,设计了一种广义预测控制器。该设计基于Hammerstein模型的动静态可分离特性,首先利用具有全局搜索能力的免疫遗传算法(IGA,Immune Genetic Algorithm)在线辨识模型的一些关键参数,然后运用广义预测控制策略实现对该系统的预测控制。仿真试验结果表明,该设计能够准确预测,而且稳定性好、稳态误差小。  相似文献   

6.
Based on Takagi–Sugeno (T–S) fuzzy models, a robust fuzzy model predictive control (MPC) algorithm is presented for a class of nonlinear time‐delay systems with input constraints. Delay‐dependent sufficient conditions for the robust stability of the closed‐loop system are derived, and the condition for the existence of the fuzzy model predictive controller is formulated in terms of nonlinear matrix inequality via the parallel distributed compensation (PDC) approach. By using a novel matrix transform technique, a receding optimization problem with linear matrix inequality (LMIs) constraints is constructed to design the desired controllers with an on‐line optimal receding horizon guaranteed cost. Finally, an example of continuous stirred tank reactors (CSTR) is given to demonstrate the effectiveness of the proposed results.  相似文献   

7.
基于聚类多模型建模的多模态预测控制   总被引:2,自引:1,他引:1  
周立芳  张赫男 《化工学报》2008,59(10):2546-2552
多模型预测控制(MMPC)是解决非线性控制问题的重要手段,本文针对多模态控制器设计中模态匹配准则的选取问题,利用当前样本状态与各聚类建模子空间距离差异,提出了一种基于距离匹配的多模型控制器加权算法。然后,基于模态融合思想,提出了模态加权构建实时预测模型的控制策略。通过对pH中和过程进行仿真,结果表明:两种方法都提高了非线性系统的暂态响应,跟踪特性优良,体现了它们对非线性系统大范围控制的有效性。  相似文献   

8.
In this work, we focus on distributed model predictive control of large scale nonlinear process systems in which several distinct sets of manipulated inputs are used to regulate the process. For each set of manipulated inputs, a different model predictive controller is used to compute the control actions, which is able to communicate with the rest of the controllers in making its decisions. Under the assumption that feedback of the state of the process is available to all the distributed controllers at each sampling time and a model of the plant is available, we propose two different distributed model predictive control architectures. In the first architecture, the distributed controllers use a one‐directional communication strategy, are evaluated in sequence and each controller is evaluated only once at each sampling time; in the second architecture, the distributed controllers utilize a bi‐directional communication strategy, are evaluated in parallel and iterate to improve closed‐loop performance. In the design of the distributed model predictive controllers, Lyapunov‐based model predictive control techniques are used. To ensure the stability of the closed‐loop system, each model predictive controller in both architectures incorporates a stability constraint which is based on a suitable Lyapunov‐based controller. We prove that the proposed distributed model predictive control architectures enforce practical stability in the closed‐loop system and optimal performance. The theoretical results are illustrated through a catalytic alkylation of benzene process example. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

9.
In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves.  相似文献   

10.
基于Min-Max的预测控制鲁棒参数设计   总被引:4,自引:2,他引:2  
徐祖华  赵均  钱积新 《化工学报》2004,55(4):613-617
工业控制中模型的不确定性是不可避免的.提出基于Min-Max的预测控制器鲁棒参数设计方法,充分考虑到模型的不确定性.仿真结果表明,控制器在对象模型一定范围内变化时仍具有较好的控制品质,不需要重新整定控制器参数,提高了系统的鲁棒性能.  相似文献   

11.
Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges.  相似文献   

12.
In this paper, the systematic derivations of setting up a nonlinear model predictive control based on the neural network are presented. This extends our previous work (Chen, 1998) into a multivariable system to explore the characteristics of the design. There are two stages for the development of nonlinear neural network predictive control: a neural network model and a control design. In the neural network model design, a parallel multiple-input, single-output neural network autoregressive with a model of exogenous inputs (NNARX) is proposed for multistep ahead predictions. In control design, the controller with extended control horizon is developed. The Levenberg-Marquardt algorithm is applied to training the NNARX model. Also, the sequential quadratic programming is used to search for the optimal manipulated inputs. The gradient of the objective function and constraints that require computation of Jacobian matrices are completely derived for optimization calculation. To demonstrate the control ability of MIMO cases, the proposed method is applied through two nonlinear simulation problems.  相似文献   

13.
In this paper, the systematic derivations of setting up a nonlinear model predictive control based on the neural network are presented. This extends our previous work (Chen, 1998) into a multivariable system to explore the characteristics of the design. There are two stages for the development of nonlinear neural network predictive control: a neural network model and a control design. In the neural network model design, a parallel multiple-input, single-output neural network autoregressive with a model of exogenous inputs (NNARX) is proposed for multistep ahead predictions. In control design, the controller with extended control horizon is developed. The Levenberg-Marquardt algorithm is applied to training the NNARX model. Also, the sequential quadratic programming is used to search for the optimal manipulated inputs. The gradient of the objective function and constraints that require computation of Jacobian matrices are completely derived for optimization calculation. To demonstrate the control ability of MIMO cases, the proposed method is applied through two nonlinear simulation problems.  相似文献   

14.
针对单元机组的大迟延、强耦合、参数时变且不确定性的特点,将T—s模糊模型引入预测控制中,作为预测模型。首先,用改进的模糊c一均值聚类算法和随机牛顿法辨识得到非线性系统的T-s模型;然后基于线性化后的系统模型设计模糊广义预测控制器,并对非线性对象进行在线控制。仿真结果表明:FGPC对于时变的非线性系统具有很好的控制效果。  相似文献   

15.
In this study, a predictive control system based on type Takagi‐Sugeno fuzzy models was developed for a polymerization process. Such processes typically have a highly nonlinear dynamic behavior causing the performance of controllers based on conventional internal models to be poor or to require considerable effort in controller tuning. The copolymerization of methyl methacrylate with vinyl acetate was considered for analysis of the performance of the proposed control system. A nonlinear mathematical model which describes the reaction plant was used for data generation and implementation of the controller. The modeling using the fuzzy approach showed an excellent capacity for output prediction as a function of dynamic data input. The performance of the projected control system and dynamic matrix control for regulatory and servo problems were compared and the obtained results showed that the control system design is robust, of simple implementation and provides a better response than conventional predictive control. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
满红  邵诚 《化工学报》2011,62(8):2275-2280
针对化工过程中广泛使用的连续搅拌反应釜(CSTR),提出一种基于神经网络的模型预测控制策略,采用分段最小二乘支持向量机辨识Hammerstein-Wiener模型系数的方法,在此基础上建立线性自回归模式〖DK〗(ARX)结构和高斯径向基神经网络串联的非线性预测控制器。利用BP神经网络训练预测控制输入序列和拟牛顿算法求解非线性预测控制律,从而实现一种基于支持向量机Hammerstein-Wiener辨识模型的非线性神经网络预测控制算法。对CSTR的仿真结果表明,该方法能够更有效地跟踪控制反应物浓度。  相似文献   

17.
一类化工过程多变量系统的自适应非线性预测控制   总被引:2,自引:2,他引:0       下载免费PDF全文
杨剑锋  赵均  钱积新  牛健 《化工学报》2008,59(4):934-940
针对化工过程的一类多变量非线性系统,提出了一种自适应非线性预测控制(ANMPC)算法。在采用递归最小二乘法进行预测模型参数在线辨识的基础上,将系统的静态非线性关系用一个反向传播(BP)神经网络稳态模型来表示,通过稳态模型求得的动态增益来进一步校正预测模型的参数。详述了ANMPC控制器设计步骤,通过在一个多变量pH中和过程中的仿真验证了本算法的可行性和有效性。  相似文献   

18.
This paper presents a new approach for temperature control of an injection molding machine (IMM) that uses a model predictive control (MPC) strategy. The control system consists of a number of single‐input‐single‐output model predictive controllers, each associated with a particular temperature zone. What distinguishes this approach from others is how the MPC strategy exploits knowledge of temperature interaction between adjacent zones and the effects of back pressure, to develop individual temperature controllers for each zone. This is achieved by decoupling the interaction between zones. The new thermal controller was simulated and implemented with good results on a 150‐tonne IMM using a series of comparative experiments. Polym. Eng. Sci. 44:2318–2326, 2004. © 2004 Society of Plastics Engineers.  相似文献   

19.
基于2次核SVM的单步非线性模型预测控制   总被引:2,自引:0,他引:2  
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.  相似文献   

20.
In recent years, cyber-security of networked control systems has become crucial, as these systems are vulnerable to targeted cyberattacks that compromise the stability, integrity, and safety of these systems. In this work, secure and private communication links are established between sensor–controller and controller–actuator elements using semi-homomorphic encryption to ensure cyber-security in model predictive control (MPC) of nonlinear systems. Specifically, Paillier cryptosystem is implemented for encryption-decryption operations in the communication links. Cryptosystems, in general, work on a subset of integers. As a direct consequence of this nature of encryption algorithms, quantization errors arise in the closed-loop MPC of nonlinear systems. Thus, the closed-loop encrypted MPC is designed with a certain degree of robustness to the quantization errors. Furthermore, the trade-off between the accuracy of the encrypted MPC and the computational cost is discussed. Finally, two chemical process examples are employed to demonstrate the implementation of the proposed encrypted MPC design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号