首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal multiobjective design of robust multimachine power system stabilizers (PSSs) using genetic algorithms is presented in this paper. A conventional speed-based lead-lag PSS is used in this work. The multimachine power system operating at various loading conditions and system configurations is treated as a finite set of plants. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electromechanical modes of all plants to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes. The problem of robustly selecting the parameters of the power system stabilizers is converted to an optimization problem which is solved by a genetic algorithm with the eigenvalue-based multiobjective function. The effectiveness of the suggested technique in damping local and interarea modes of oscillations in multimachine power systems, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear simulation results.  相似文献   

2.
A novel hybrid approach involving Particle Swarm Optimization (PSO) and Bacterial Foraging Optimization Algorithm (BFOA) called Bacterial Swarm Optimization (BSO) is illustrated for optimal Power System Stabilizers (PSSs) design in a multimachine power system. In BSO, the search directions of tumble behavior for each bacterium are oriented by the individual’s best location and the global best location of PSO. The proposed hybrid algorithm has been extensively compared with the original BFOA algorithm and the PSO algorithm. Simulation results have shown the validity of the proposed BSO in tuning PSSs compared with BFOA and PSO. Moreover, the results are presented to demonstrate the effectiveness of the proposed controller to improve the power system stability over a wide range of loading conditions and various disturbances.  相似文献   

3.
Design of a power system stabilizer (PSS) using simulated annealing (SA) heuristic optimization technique is presented in this paper. Two different PSSs are proposed, namely, simulated annealing based PSS (SPSS) and robust SPSS (RSPSS). The proposed approach employs SA to search for optimal or near optimal settings of (RSPSS). The proposed approach employs SA to search for optimal or near optimal settings of PSS parameters. An objective function that shifts the system eigenvalues associated with the electromechanical modes to the left in the s-plane is proposed. The robustness of the proposed SPSS and RSPSS over a wide range of loading conditions and system parameter uncertainities is investigated. The nonlinear simulation results show the effectiveness of the proposed PSSs to damp out the low frequency oscillations and work effectively over a wide range of loading conditions and system parameter uncertainities.  相似文献   

4.
Cuckoo Search (CS) algorithm is introduced in this paper for optimal Power System Stabilizers (PSSs) design in a multimachine power system. The PSSs parameter tuning problem is formulated as an optimization problem which is solved by CS Algorithm. An eigenvalues based objective function involving the damping ratio, and the damping factor of the lightly damped electromechanical modes is considered for the PSSs design problem. The performance of the proposed CS based PSSs (CSPSS) has been compared with Genetic Algorithm (GA) based PSSs (GAPSS) and the Conventional PSSs (CPSS) under different operating conditions and disturbances. The results of the developed CSPSS are verified through time domain analysis, eigenvalues and performance indices. Also, the effectiveness of the proposed algorithm in providing good damping characteristics is confirmed.  相似文献   

5.
Optimal locations and design of robust multimachine power system stabilizers (PSSs) using genetic algorithms (GA) is presented in this paper. The PSS parameters and locations are computed to assure maximum damping performance under different operating conditions. The efficacy of this technique in damping local and inter-area modes of oscillations in multimachine power systems is confirmed through nonlinear simulation results and eigenvalues analysis.  相似文献   

6.
This paper develops a novel algorithm for simultaneous coordinated designing of power system stabilizers (PSSs) and static var compensator (SVC) in a multimachine power system. The coordinated design problem of PSS and SVC over a wide range of loading conditions is formulated as an optimization problem. The Bacterial Foraging Optimization Algorithm (BFOA) is employed to search for optimal controllers parameters. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is improved. To compare the capability of PSS and SVC, both are designed independently, and then in a coordinated manner. Simultaneous tuning of the bacterial foraging based coordinated controller gives robust damping performance over wide range of operating conditions and large disturbance in compare to optimized PSS controller based on BFOA (BFPSS) and optimized SVC controller based on BFOA (BFSVC). Moreover, a statistical T test is performed to ensure the effectiveness of coordinated controller versus uncoordinated one.  相似文献   

7.
This paper presents a global tuning procedure for FACTS device stabilizers (FDS) and power system stabilizers (PSS) in a multi-machine power system using a parameter-constrained nonlinear optimization algorithm implemented in a simulation program. This algorithm deals with such an optimization problem by solving a sequential quadratic programming using the dual algorithm. The main objective of this procedure is to simultaneously optimize pre-selected parameters of the FDSs and PSSs having fixed parameters in coping with the complex nonlinear nature of the power system. By minimizing a nonexplicit target function in which the oscillatory rotor modes of the generators involved and suing characteristics between areas are included, interactions among the FACTS controls under transient conditions in a multimachine power system are improved. A multimachine power system equipped with a TCSC and an SVC as well as three PSSs is applied to demonstrate the efficiency and robustness of the tuning procedure presented. The results obtained from simulations validate the improvement in damping of overall power oscillations in the system in an optimal and globally coordinated manner. The simulations also show that the stabilizers tuned are robust in providing adequate damping for a range of conditions in the system  相似文献   

8.
Power system stability enhancement via robust optimum design of power system stabilizers (PSSs) and thyristor controlled series capacitor (TCSC)-based stabilizers is thoroughly investigated in this paper. The design problem of PSS and TCSC-based stabilizers is formulated as an optimization problem where a reinforcement learning automata-based optimization algorithm is applied to search for the optimal setting of the proposed PSS and CSC parameters. A pole placement based objective function is considered to shift the dominant system eigenvalues to the left in the s-plane. For evaluation of the effectiveness and robustness of the proposed stabilizers, their performances have been examined on a weakly connected power system subjected to different disturbances, loading conditions, and system parameter variations. The nonlinear simulation results and eigenvalues analysis demonstrate the high performance of the proposed stabilizers and their ability to provide efficient damping of low frequency oscillations. In addition, it is observed that the proposed CSC has greatly improved the voltage profile of system under severe disturbances.  相似文献   

9.
A fuzzy basis function network (FBFN) based power system stabilizer (PSS) is presented in this paper to improve power system dynamic stability. The proposed FBFN based PSS provides a natural framework for combining numerical and linguistic information in a uniform fashion. The proposed FBFN is trained over a wide range of operating conditions in order to re-tune the PSS parameters in real-time based on machine loading conditions. The orthogonal least squares (OLS) learning algorithm is developed for designing an adequate and parsimonious FBFN model. Time domain simulations of a single machine infinite bus system and a multimachine power system subject to major disturbances are investigated. The performance of the proposed FBFN PSS is compared with that of conventional (CPSS). The results show the capability of the proposed FBFN PSS to enhance the system damping of local modes of oscillations over a wide range of operating conditions. The decentralized nature of the proposed FBFN PSS makes it easy to install and tune  相似文献   

10.
互联电力系统中PSS的全局协调优化   总被引:10,自引:4,他引:6  
分析了互联电力系统中常规分散、局部设计的PSS之间可能存在的不良相互作用,指出了对相关机组的PSS进行全局协调优化的必要性,并提出了一种多机互联系统中常规 PSS的全局协调优化方法。该方法使用在NETOMAC程序中实现的非线性优化算法,其主要目标是同时优化具有因定参数的PSS的预选参数,以处理电力系统复杂的非线性特性,通过最小化包含相关发电机转子振荡模式和区域间振荡特性的非显式目标函数,使互联电力系统在暂态条件下功率振荡的阻尼特性得到全面改善,因而该方法对大规模电力系统中控制器的全局协调具有独特的优势。4机测试系统和欧洲电网的仿真结果证明了文中所提方法的有效性和鲁棒性。  相似文献   

11.
This paper aims to select the optimal location and setting parameters of SVC (Static Var Compensator) and TCSC (Thyristor Controlled Series Compensator) controllers using PSO (Particle Swarm Optimization) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) associated with generators are mandatory requirements for damping of oscillations in the power system, its performance still gets affected by changes in network configurations, load variations, etc. Hence installations of FACTS devices have been suggested in this paper to achieve appreciable damping of system oscillations. However the performance of FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper the PSO based technique is used to investigate this problem in order to improve the small signal stability. An attempt has also been made to compare the performance of the TCSC controller with SVC in mitigating the small signal stability problem. To show the validity of the proposed techniques, simulations are carried out in a multimachine system for two common contingencies, e.g., load increase and transmission line outage. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response. It has been observed that the TCSC controller is more effective than SVC even during higher loading in mitigating the small signal stability problem.  相似文献   

12.
This paper presents an application of probabilistic theory to the coordinated design of power system stabilizers (PSSs) and FACTS controllers, taking static VAr system (SVC) as an example. The aim is to enhance the damping of multi electro-mechanical modes in a multimachine system over a large and pre-specified set of operating conditions. In this work, conventional eigenvalue analysis is extended to the probabilistic environment in which the statistical nature of eigenvalues corresponding to different operating conditions is described by their expectations and variances. Probabilistic sensitivity indices (PSIs) are used for robust damping controller site selection and for optimization objective functions. A probabilistic eigenvalue-based objective function is employed for coordinated design of PSS and SVC controller parameters. The effectiveness of the proposed controllers is demonstrated on an 8-machine system.  相似文献   

13.
Seeker optimization algorithm (SOA) is a new heuristic population-based search algorithm. In this paper, SOA is utilized to tune the parameters of both single-input and dual-input power system stabilizers (PSSs). In SOA, the act of human searching capability and understandings are exploited for the purpose of optimization. In SOA-based optimization, the search direction is based on empirical gradient by evaluating the response to the position changes and the step length is based on uncertainty reasoning by using a simple fuzzy rule. Conventional PSS (CPSS) and the three dual-input IEEE PSSs (namely PSS2B, PSS3B and PSS4B) are optimally tuned to obtain the optimal transient performances. From simulation study it is revealed that the transient performance of the dual-input PSS is better than the single-input PSS. It is further explored that among the dual-input PSSs, PSS3B offers the best optimal transient performance. While comparing the SOA with recently reported optimization algorithms like bacteria foraging optimization (BFO) and genetic algorithm (GA), it is revealed that the SOA is more effective than either BFO or GA in finding the optimal transient performance. Sugeno fuzzy logic (SFL)-based approach is adopted for on-line, off-nominal operating conditions. On real time measurements of system operating conditions, SFL adaptively and very fast yields on-line, off-nominal optimal stabilizer parameters.  相似文献   

14.
This paper presents the design and implementation of Power System Stabilizers in a multimachine power system based on innovative evolutionary algorithm overtly as Breeder Genetic Algorithm with Adaptive Mutation. For the analysis purpose a Conventional Power System Stabilizer was also designed and implemented in the same system. Simulation results on multimachine systems subjected to small perturbation and three phase fault radiates the effectiveness and robustness of the proposed Power System Stabilizers over a wide range of operating conditions and system configurations. The results have shown that Adaptive Mutation Breeder Genetic Algorithms are well suited for optimal tuning of Power System Stabilizers and they work better than conventional Genetic Algorithm, since they have been designed to work on continuous domain. This proposed Power System Stabilizer is demonstrated through a weakly connected three multi-machine test systems.  相似文献   

15.
Power system stability enhancement via STATCOM-based stabilizers is thoroughly investigated in this paper. This study presents a singular value decomposition (SVD)-based approach to assess and measure the controllability of the poorly damped electromechanical modes by STATCOM different control channels. The coordination among the proposed damping stabilizers and the STATCOM internal ac and dc voltage controllers has been taken into consideration. The design problem of STATCOM-based stabilizers is formulated as an optimization problem. For coordination purposes, a time domain-based multiobjective junction to improve the system stability as well as ac and dc voltage regulation is proposed. Then, a real-coded genetic algorithm (RCGA) is employed to search for optimal stabilizer parameters. This aims to enhance both rotor angle stability and voltage regulation of the power system. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions. It is also observed that the proposed STATCOM-based damping stabilizers extend the critical clearing time (CCT) and enhance greatly the power system transient stability.  相似文献   

16.
Coordinated design of a power system stabilizer (PSS) and a static phase shifter (SPS) using genetic algorithm (GA) is investigated in this paper. The design problem of PSS and SPS controller is formulated as an optimization problem. An eigenvalue-based objective function to increase the system damping is proposed. Then, GA is employed to search for optimal controller parameters. Different control schemes have been proposed and tested on a weakly connected power system with different disturbances, loading conditions, and parameter variations. It was observed that although the PSS enhances the power system stability, the SPS controller provides most of the damping and improves the voltage profile of the system. The nonlinear simulation results show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and system parameter variations.  相似文献   

17.
A robust coordination scheme to improve the stability of a power system by optimal design of multiple and multi-type damping controllers is presented in this paper. The controllers considered are power system stabilizer (PSS) and static synchronous series compensator (SSSC)-based controller. Local measurements are provided as input signals to all the controllers. The coordinated design problem is formulated as an optimization problem and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performance of the proposed controllers is evaluated for both single-machine infinite-bus power system and multi-machine power system. Nonlinear simulation results are presented over a wide range of loading conditions and system configurations to show the effectiveness and robustness of the proposed coordinated design approach. It is observed that the proposed controllers provide efficient damping to power system oscillations under a wide range of operating conditions and under various disturbances. Further, simulation results show that, in a multi-machine power system, the modal oscillations are effectively damped by the proposed approach.  相似文献   

18.
A pole placement technique for power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) based stabilizer using simulated annealing (SA) algorithm is presented in this paper. The proposed approach employs SA optimization technique to PSS (SAPSS) and TCSC-based stabilizer (SACSC) design. The design problem is formulated as an optimization problem where SA is applied to search for the optimal setting of the proposed SAPSS and SACSC parameters. A pole placement-based objective function to shift the dominant eigenvalues to the left in the s-plane is considered. The proposed SAPSS and SACSC have been examined on a weakly connected power system with different disturbances, loading conditions, and system parameter variations. Eigenvalue analysis and nonlinear simulation results show the effectiveness and the robustness of the proposed stabilizers and their ability to provide efficient damping of low frequency oscillations. In addition, the performance of the proposed stabilizers outperforms that of the conventional power system stabilizer (CPSS). It is also observed that the proposed SACSC improves greatly the voltage profile of the system under severe disturbances.  相似文献   

19.
电力系统无功优化的LRS-PSO算法   总被引:3,自引:0,他引:3  
提出一种应用局部随机搜索粒子群优化(LRS—PSO)算法求解电力系统无功优化的新方法。使用概率调用策略调用局部随机搜索(LRS)算子。给出了适合无功优化问题的LRS算子的具体实现以及应用LRS—PSO算法求解电力系统无功优化的步骤。对IEEE30节点测试系统进行了无功优化计算,并与标准遗传算法(SGA)、粒子群优化(PSO)算法的测试结果进行了比较。仿真结果表明,与SGA、PSO算法相比,应用LRS—PSO算法求解无功优化问题具有质量更高的解,收敛特性更好。  相似文献   

20.
A novel approach for on-line adaptive tuning of power system stabilizer (PSS) parameters using radial basis function networks (RBFNs) is presented in this paper. The proposed RBFN is trained over a wide range of operating conditions and system parameter variations in order to re-tune PSS parameters on-line based on real-time measurements of machine loading conditions. The orthogonal least squares (OLS) learning algorithm is developed for designing an adequate and parsimonious RBFN model. The simulation results of the proposed radial basis function network based power system stabilizer (RBFN PSS) are compared to those of conventional stabilizers in case of a single machine infinite bus (SMIB) system as well as a multimachine power system (MMPS). The effect of system parameter variations on the proposed stabilizer performance is also examined. The results show the robustness of the proposed RBFN PSS and its ability to enhance system damping over a wide range of operating conditions and system parameter variations. The major features of the proposed RBFN PSS are that it is of decentralized nature and does not require on-line model identification for tuning process. These features make the proposed RBFN PSS easy to tune and install.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号