首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-firing NH3 with H2/CO/syngas (SYN) is a promising method to overcome the low reactivity of NH3/air flame. Hence, this study aims to systematically investigate the laminar premixed combustion characteristics of NH3/air flame with various H2/CO/SYN addition loadings (0–40%) using chemical kinetics simulation. The numerical results were obtained based on the Han mechanism which can provide accurate predictions of laminar burning velocities. Results showed that H2 has the greatest effects on increasing laminar burning velocities and net heat release rates of NH3/air flame, followed by SYN and CO. CO has the most significant effects on improving NH3/air adiabatic flame temperatures. The H2/CO/SYN additions can accelerate NH3 decomposition rates and promote the generation of H and NH2 radicals. Furthermore, there is an evident positive linear correlation between the laminar burning velocities and the peak mole fraction of H + NH2 radicals. The reaction NH2 + NH <=> N2H2 + H and NH2 + NO <=> NNH + OH have remarkable positive effects on NH3 combustion. The mole fraction of OH × NH2 radicals positively affects the net heat release rates. Finally, it was discovered that H radicals play an important role in the generation of NO. The H2/CO/SYN additions can reduce the hydrodynamic and diffusional-thermal instabilities of NH3/air flame. The NH3 reaction pathways for NH3–H2/CO/SYN-air flames can be categorized mainly into NH3–NH2–NH–N–N2, NH3–NH2–HNO–NO(?N2O)–N2 and NH3–NH2(?N2H2)–NNH–N2. CO has the greatest influence on the proportions of three NH3 reaction routes.  相似文献   

2.
The NO formation characteristics and reaction pathways of opposed-jet H2/CO syngas diffusion flames were analyzed with a revised OPPDIF program which coupled a narrowband radiation model with detailed chemical kinetics in this work. The effects of strain rates ranging from 0.1 to 1000 s?1 and diluents including CO2, H2O and N2 on NO production rates were investigated for three typical syngas compositions. The numerical results demonstrated that NO is produced primary through NNH-intermediate route and thermal route at high strain rates, where the reaction of NH + O = NO + H (R51) also become more active. Near the strain rate of 10 s?1, the flame temperature is the highest and thermal route is the dominant NO formation route, but NO would be consumed by reburn route where NO is converted to NH through HNO, especially for H2-rich syngas. At low strain rates, radiative heat loss results in a lower flame temperature and further reduce NO formation, while the reaction of N + CO2 = NO + CO (R140) become more important, especially for CO-rich syngas. With the diluents, NO production rates decreased with increasing dilution percentages. When the flame temperature is very high as the thermal route is dominant near strain rate of 10 s?1, CO2 dilution makes flame temperature and NO production rate the lowest. Toward both lower and higher strain rates, adding H2O is more effective in reducing NO because R140 and NNH-intermediate route are suppressed the most by H2O dilution respectively.  相似文献   

3.
A numerical study has been conducted to clearly grasp the impact of chemical effects caused by added CO2 and of flame location on flame structure and NO emission behaviour. Flame location affects the major source reaction of CO formation, CO2+H→CO+OH and the H‐removal reaction, CH4+H→CH3+H2. It is, as a result, seen that the reduction of maximum flame temperature due to chemical effects for fuel‐side dilution is mainly caused by the competition of the principal chain branching reaction with the reaction, CH4+H→CH3+H2, while that for fuel‐side dilution is attributed to the competition of the principal chain branching reaction with the reaction, CO2+H→CO+OH. The importance of the NNH mechanism for NO production, where the reaction pathway is NNH→NH→HNO, is recognized. In C‐related reactions most of NO is the direct outcome of (R171) and the contribution of (R171) becomes more and more important with increasing amount of added CO2 as much as the reaction step (R171) competes with the key reaction of thermal mechanism, (R237), for N atom. This indicates a possibility that NO emission in hydrogen flames diluted with CO2 shows less dependent behaviour upon flame temperature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, extensive chemical kinetic modeling is performed to analyze the combustion and emissions characteristics of premixed NH3/CH4–O2/N2/H2O2 mixtures at different replacement percentages of air with hydrogen peroxide (H2O2). This work is comprehensively discusses the ignition delay time, flame speed, heat release rate, and NOx & CO emissions of premixed NH3/CH4–O2/N2/H2O2 mixtures. Important intermediate crucial radicals such as OH, HO2, HCO, and HNO effect on the above-mentioned parameters is also discussed in detail. Furthermore, correlations were obtained for the laminar flame speed, NO, and CO emissions with important radicals such as OH, HO2, HCO, and HNO. The replacement of air with H2O2 increases flame speed and decreases the ignition delay time of the mixture significantly. Also, increases the CO and NOx concentration in the products. The CO and NOx emissions can be controlled by regulating the H2O2 concentration and equivalence ratios. Air replacement with H2O2 enhances the reactions rate and concentration of intermediate radicals such as O/H, HO2, and HCO in the mixture. These intermediate radicals closely govern the combustion chemistry of the NH3/CH4– O2/N2/H2O2 mixture. A linear correlation is observed between the flame speed and peak mole fraction of OH + HO2 radicals, and 2nd degree polynomial correlation is observed for the peak mole fraction of NO and CO with HNO + OH and HCO + OH radicals, respectively.  相似文献   

5.
Ammonia-coal co-combustion is a feasible approach to reduce CO2 emissions during thermal power generation, it is necessary to study NO formation mechanism in ammonia-coal co-firing to realize low-carbon and low-nitrogen combustion. The experimental results showed that temperature and ammonia ratio have a significant effect on the NO formation. Under the same ammonia blending amount, the NO production increased first and then decreased with temperature increasing. Theoretical calculations revealed that the formation of NH in NH3→NH→NO is one of the factors restricting ammonia combustion. NH oxidation on the char surface first occurred in the NH/coal/O2 combustion system, and realized the conversion of N to NO, HNO and NO2 through different reaction paths. Combined with the experimental and theoretical calculation results, it was concluded that the reduction of NO by ammonia/char is enhanced at high temperature (>1300 °C), which reduces the conversion of ammonia-N/coal-N to NO.  相似文献   

6.
A.A. Konnov 《Combustion and Flame》2009,156(11):2093-1037
This work presents revised detailed reaction mechanism for small hydrocarbons combustion with possibly full implementation of available kinetic data related to the prompt NO route via NCN. It was demonstrated that model predictions with the rate constant of reaction CH + N2 = NCN + H measured by Vasudevan and co-workers are much higher than experimental concentrations of NO in rich premixed flames at atmospheric pressure. Analysis of the correlations of NO formation with calculated concentrations of C2O radicals strongly supports the inclusion of reaction between C2O and N2 and reduction of the rate constant of reaction between CH and N2. Rate constants of the reactions of NCN consumption were mostly taken from the works of Lin and co-workers. Some of these reactions affect calculated profiles of NCN in flames. Proposed modifications allow accurate prediction of NO formation in lean and rich flames of methane, ethylene, ethane and propane. Agreement of the experiments and the modeling was much improved as compared to the previous Release 0.5 of the Konnov mechanism. Satisfactory agreement with available measurements of NCN radicals in low pressure flames was also demonstrated.  相似文献   

7.
A new way of forming HCN in flames via N2O and NNH reacting with CHi radicals is proposed and tested for rich and lean gaseous premixed flames of CH4 and air and also of CH4, N2O and Ar. This new route is thermodynamically more probable than Fenimore’s direct reaction of N2 with CHi radicals. In fact, it is shown that the new mechanism is more important than Fenimore’s reaction in both rich and lean flames. Rate constants of the new reactions forming NO have been suggested on the basis of numerical modeling. It has been shown that the formation of NO through HCN is most effective as the result of reactions initiated by N2O + CH3 → CH2NH + NO, followed by CH2NH + H → H2CN + H2 and CH2NH + O → H2CN + OH. In flames of CH4 and air, a substantial source of N2O comes from the reverse of the reaction N2O + CH3 → CH3O + N2 in the reaction zone. A formula based on the steady state assumption and partial equilibrium limits the number of nitrogen conversion reactions to only 12; this was tested using a premixed flame of CH4 and air.  相似文献   

8.
This paper used the opposed-flow flame model and GRI 3.0 mechanism to investigate NO emission characteristics of H2-rich and H2-lean syngas under diffusion and premixed conditions, respectively, and analyzed influences of adding H2O, CO2 and N2 on NO formation from the standpoint of thermodynamics and reaction kinetics. For diffusion flames, thermal route is the dominant pathway to produce NO, and adding N2, H2O and CO2 shows a decreasing manner in lowering NO emission. The phenomenon above is more obvious for H2-rich syngas because it has higher flame temperature. For premixed flames, adding CO2 causes higher NO concentration than adding H2O, because adding CO2 produces more O radical, which promotes formation of NO through NNH + O = NH + NO, NH + O = NO + H and reversed N + NO = N2 + O. And in burnout gas, thermal route is the dominant way for NO formation. Under this paper's conditions, adding N2 increases the formation source of NO as well as decreases the flame temperature, and it reduces the NO formation as a whole. In addition, for H2-lean syngas and H2-rich syngas with CO2 as the diluent, N + CO2 = NO + CO plays as an important role in thermal route of NO formation.  相似文献   

9.
This paper reported a numerical study on the NOx emission characteristics of opposed-jet syngas diffusion flames. A narrowband radiation model was coupled to the OPPDIF program, which used detailed chemical kinetics and thermal and transport properties to enable the study of 1-D counterflow syngas diffusion flames with flame radiation. The effects of syngas composition, pressure and dilution gases on the NOx emission of H2/CO synthetic mixture flames were examined. The analyses of detailed flame structures, chemical kinetics, and nitrogen reaction pathways indicate NOx are formed through Zeldovich (or thermal), NNH and N2O routes both in the hydrogen-lean and hydrogen-rich syngas flames at normal pressure. Zeldovich route is the main NO formation route. Therefore, the hydrogen-rich syngas flames produce more NO due to higher flame temperatures compared to that for hydrogen-lean syngas flames. Although NNH and N2O routes also are the primary NO formation paths, a large amount of N2 will be reformed from NNH and N2O species. For hydrogen-rich syngas flames, the NO formation from NNH and N2O routes are lesser, where NO can be dissipated through the reactions of NH + NO  N2 + OH and NH + NO  N2O + H more actively. At a rather low pressure (0.01 atm), NNH-intermediate route is the only formation path of NO. Increasing pressure then enhances NO formation reactions, especially through Zeldovich mechanisms. However, at higher pressures (5–10 atm), NO is then converted back to N2 through reversed N2O route for hydrogen-lean syngas flames, and through NNH as well for hydrogen-rich syngas flames. In addition, the dilution effects from CO2, H2O, and N2 on NO emissions for H2/CO syngas flames were studied. The hydrogen-lean syngas flames with H2O dilution have the lowest NO production rate among them, due to a reduced reaction rate of NNH + O  NH + NO. But for hydrogen-rich syngas flames with CO2 dilution, the flame temperatures decrease significantly, which leads to a reduction of NO formation from Zeldovich route.  相似文献   

10.
A chemical kinetic model for determining the mole fractions of stable and intermediate species for CH4/NO2/O2 flames is developed. The model involves 30 different species in 101 chemical elementary reactions. The mole fractions of the species are plotted as a function of the distance from the surface of the burner. The effects of the equivalence ratio on the concentrations of CO, CO2, N2, NH2, OH, H2O, NO and NO2 for lean CH4/NO2/O2 flames in the post flame zone at 50 Torr are obtained. The flames are flat, laminar, one dimensional and premixed. The calculated concentration profiles as a function of the equivalence ratio and distance from the surface of the burner are compared with the experimental data. The comparison indicates that the kinetics of the flames are reasonably described by the developed model. The mole fraction of N2, NH2, OH, H2O, CO2 and CO increase while the mole fractions of NO and NO2 decrease by increasing the equivalence ratio for lean flames. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The freely-propagating laminar premixed flames of (CH4+CO2)/air mixtures were calculated with the PREMIX code at various CO2 contents (0–0.35) and equivalence ratios (0.7–1.3). The chemical reaction mechanism GRI-Mech 3.0 was chosen to determine the effects of CO2 addition. The chemical effects of CO2 and the changes of the mole fraction on the important active radicals CH3, OH, H and O and the sensitivity of the main reactions contributing to their information were analyzed. The results show that with the increase of XCO2, the laminar burning velocity and the adiabatic flame temperature are decreased. Moreover, the amount of NOx produced and the mole concentrations and the net rates of main reactions of CH3, OH, H and O also decrease as CO2 is added. The dominant reactions responsible for the four free radicals are R38 H + O2 = OH + H, followed by R52 H + CH3 (+ M) = CH4 (+ M) and R35 H + O2 + H2O = H2O + HO2.  相似文献   

12.
The effect of CO2 reactivity on CH4 oxidation and H2 formation in fuel-rich O2/CO2 combustion where the concentrations of reactants were high was studied by a CH4 flat flame experiment, detailed chemical analysis, and a pulverized coal combustion experiment. In the CH4 flat flame experiment, the residual CH4 and formed H2 in fuel-rich O2/CO2 combustion were significantly lower than those formed in air combustion, whereas the amount of CO formed in fuel-rich O2/CO2 combustion was noticeably higher than that in air. In addition to this experiment, calculations were performed using CHEMKIN-PRO. They generally agreed with the experimental results and showed that CO2 reactivity, mainly expressed by the reaction CO2 + H → CO + OH (R1), caused the differences between air and O2/CO2 combustion under fuel-rich condition. R1 was able to advance without oxygen. And, OH radicals were more active than H radicals in the hydrocarbon oxidation in the specific temperature range. It was shown that the role of CO2 was to advance CH4 oxidation during fuel-rich O2/CO2 combustion. Under fuel-rich combustion, H2 was mainly produced when the hydrocarbon reacted with H radicals. However, the hydrocarbon also reacted with the OH radicals, leading to H2O production. In fact, these hydrocarbon reactions were competitive. With increasing H/OH ratio, H2 formed more easily; however, CO2 reactivity reduced the H/OH ratio by converting H to OH. Moreover, the OH radicals reacted with H2, whereas the H radicals did not reduce H2. It was shown that OH radicals formed by CO2 reactivity were not suitable for H2 formation. As for pulverized coal combustion, the tendencies of CH4, CO, and H2 formation in pulverized coal combustion were almost the same as those in the CH4 flat flame.  相似文献   

13.
One-dimensional premixed freely-propagating flames for (CH4+CO2/H2O)/air(79%N2+21%O2) mixtures were modeled using ChemkinⅡ/Premix Code with the detailed mechanism GRI-Mech 3.0. The investigation of the effects of CO2 and steam addition on the H2 intermediate formation and NO emission was conducted at the initial conditions of 1 atm and 398 K. Both physical and chemical effects of CO2, H2O on laminar burning velocities and adiabatic flame temperatures were also analyzed. The calculations show that with the increase of αCO2 and αH2O, both physical and chemical effects of CO2 and H2O result in the reduction of laminar burning velocities (LBVs) and adiabatic flame temperatures (AFTs) in which the chemical effects of CO2 addition are more significantly than H2O. Especially, the chemical effects of steam promote the increase of AFTs and the influence in rich BG65 flames are larger than in methane. With a proper amount of H2O addition, the chemical effects of H2O on the peak concentration of H2 are more significantly than physical at Φ = 1.2. Moreover, CO2, steam and their mixture addition have significant reduction on the NO emission. The most sensitive reaction for the formation of H2 and NO emission were determined. The responsible reactions for H2 formation and NO emission are R84 OH + H2 <=> H + H2O and R240 CH + N2 <=> HCN + N (a prompt routine), respectively.  相似文献   

14.
Flat premixed burner-stabilized H2 + O2 + N2 flames, neat or doped with 300–1000 ppm of NO or NH3, were studied experimentally using molecular-beam mass-spectrometry and simulated numerically. Spatial profiles of temperature and concentrations of stable species, H2, O2, H2O, NO, NH3, and of H and OH radicals obtained at atmospheric pressure in lean (? = 0.47), near-stoichiometric (? = 1.1) and rich (? = 2.0) flames are reported. Good agreement between measured and calculated structure of lean and near-stoichiometric flames was found. Significant discrepancy between simulated and measured profiles of NO concentration was observed in the rich flames. Sensitivity and reaction path analyses revealed reactions responsible for the discrepancy. Modification to the model was proposed to improve an overall agreement with the experiment.  相似文献   

15.
The NO mechanism under the moderate or intense low-oxygen dilution (MILD) combustion of syngas has not been systematically examined. This paper investigates the NO mechanism in the syngas MILD regime under the dilution of N2, CO2, and H2O through counterflow combustion simulation. The syngas reaction mechanism and the counterflow combustion simulation are comprehensively validated under different CO/H2 ratios and strain rates. The effects of oxygen volume fraction, CO/H2 ratio, pressure, strain rate, and dilution atmosphere are systematically investigated. For all the MILD cases, the contribution of the prompt and NO-reburning routes to the overall NO emission is less than 0.1% due to the lack of CH4 in fuel. At atmospheric pressure, the thermal route only accounts for less than 20% of the total NO emission because of the low reaction temperature. Moreover, at atmospheric pressure, the contribution of the NNH route to NO emission is always larger than 55% in the N2 atmosphere. The N2O-intermediate route is enhanced in CO2 and H2O atmospheres due to the increased third-body effects of CO2 and H2O through the reaction N2 + O (+M) ? N2O (+M). Especially in the H2O atmosphere, the N2O-intermediate route contributes to 60% NO at most. NO production is reduced with increasing CO/H2 ratio or pressure, mainly due to decreased NO formation from the NNH route. Importantly, a high reaction temperature and low NO emission are simultaneously achieved at high pressure. To minimize NO emission, the reactions should be operated at high values of CO/H2 ratios (i.e., >4) and pressures (e.g., P > 10 atm), low oxygen volume fractions (e.g., XO2 < 15%), and using H2O as a diluent. This study provides a new fundamental understanding of the NO mechanism of syngas MILD combustion in N2, CO2, and H2O atmospheres.  相似文献   

16.
The purpose of this study was to investigate the NOx formation and reduction mechanisms in staged O2/CO2 combustion and in air combustion. A flat CH4 flame doped with NH3 for fuel-N was formed over the honeycomb, and NOx formation characteristics were investigated. In addition, chemiluminescence of OH* distribution was measured, and CHEMKIN-PRO was used to investigate the detailed NOx reduction mechanism. In general, the NOx conversion ratio decreases with decreasing primary O2/CH4 ratio, whereas NH3 and HCN, which are easily converted to NOx in the presence of O2, increases rapidly. Therefore, a suitable primary O2/CH4 ratio exists in the staged combustion. Our experiments showed the primary O2/CH4 ratio, which gave the minimum fixed nitrogen compounds in O2/CO2 combustion, was lower than in air combustion. The NOx conversion ratio in O2/CO2 combustion was lower than in air combustion by 40% in suitable staged combustion. This could be explained by high CO2 concentrations in the O2/CO2 combustion. It was shown that abundant OH radicals were formed in O2/CO2 combustion through the CO2 + H → CO + OH, experimentally and numerically. OH radicals produced H and O radicals through H2 + OH → H + H2O and O2 + H → OH + O, because a mass of hydrogen source exists in the CH4 flame. O and OH radicals formed in the fuel-rich region enhanced the oxidation of NH3 and HCN. NOx formed by the oxidation of NH3 and HCN was converted to N2 because the oxidation occurred in the fuel-rich region where the NOx reduction effect was high. In fact, the oxidation of NH3 and HCN in the fuel-rich region was preferable to remaining NH3 and HCN before secondary O2 injection in the staged combustion. A significant reduction in NOx emission could be achieved by staged combustion in O2/CO2 combustion.  相似文献   

17.
《Combustion and Flame》2001,124(1-2):106-126
A detailed N/H reaction mechanism has been developed and validated by comparing modeling results with measurements of hydrazine pyrolysis in shock waves, and in hydrazine decomposition flames at low and atmospheric pressures. The mechanism consists of 51 reactions for 11 species. Rate constants for several decomposition reactions have been estimated employing updated thermodynamic data. Analysis of the reactions abstracting an H atom from NH3, NH2, NH and N2H4 from 1000 to 2000 K demonstrates that the Evans-Polanyi correlation holds for the radicals H, NH, and NH2. Probably it is also valid for the radicals N, NNH and N2H3. Several rate constants were estimated with this assumption. No further adjustment of the mechanism was attempted. The modeling correctly reproduces the experimental rate of decomposition of hydrazine and also the product distribution. The initial decomposition of N2H4 into two NH2 radicals and the subsequent reaction N2H4 + NH2 → NH3 + N2H3 mainly govern the decomposition of hydrazine in dilute mixtures and together with the reaction NH2 + NH2 → N2H2 + H2 control the propagation speed of a hydrazine flame. The computed speeds of such decomposition flames agree well with low-pressure and atmospheric pressure experiments for pure hydrazine and its mixtures with Ar, N2, H2O and NH3. Also the concentration profiles of major and minor species in low-pressure hydrazine flames are well reproduced. A sensitivity analysis identifies the critical reactions in particular experimental conditions. The choice of rate constants for key reactions and further development of the mechanism is discussed.  相似文献   

18.
The reaction of ground-state NH with H2 has been studied in a high-temperature photochemistry (HTP) reactor. The NH(X3Σ) radicals were generated by the 2-photon 193 nm photolysis of NH3, following the decay of the originally produced NH(A3Π) radicals. Laser-induced fluorescence on the transition at 336 nm was used to monitor the progress of the reaction. We obtained , with ±2σ precision limits varying from 12 to 33% and corresponding accuracy levels from 23 to 39%. This result is in excellent agreement with that of Rohrig and Wagner [Proc. Combust. Inst. 25 (1994) 975] and the data sets can be combined to yield . Starting with this agreement, it is argued that their rate coefficients for NH + CO2 could not be significantly in error [Proc. Combust. Inst. 25 (1994) 975]. This, combined with models of several combustion systems, indicates that HNO + CO cannot be the products, contrary to their suggestion [Proc. Combust. Inst. 25 (1994) 975]. Ab initio calculations have been performed which confirm this conclusion by showing the barriers leading to these products to be too high compared to the measured activation energies. The calculations indicate the likelihood of formation of adducts, of low stability. These then may undergo further reactions. The NH + H2O reaction is briefly discussed and it is similarly argued that HNO + H2 cannot be the products, as had been previously suggested.  相似文献   

19.
《Energy》2005,30(2-4):475-484
The formation of N2O in a mixture of NO, CO, H2, O2 and N2 was investigated experimentally in a tubular-flow reactor containing a catalyst.It was found that the reduction of NO is enhanced by the presences of H2, and to a lesser extent CO, and that N2O is formed as a by-product of NH3 decomposition and NO reduction in the presence of H2, and through NO reduction in the presence of CO. The main product of NH3 oxidation is N2 in addition to the products of NO and N2O, and the rate of conversion for NH3 to N2O is about 10%. The conversion of NO to N2O is higher in the presence of H2 than in the presence of CO at lower temperature, and there is a range of temperature in which the formation of N2O is enhanced in the presence of either H2 or CO, whereas CO enhances N2O production from catalytic NO reduction more than H2 in a CO/H2/NO/O2/N2 gas system.  相似文献   

20.
Action of oxygen and sodium carbonate in the urea-SNCR process   总被引:1,自引:0,他引:1  
Experimental researches are focused on the effects of O2 concentration and sodium carbonate on Selective Non-Catalytic Reduction (SNCR) performance in a tube reactor, and plug flow reactor model and perfectly stirred reactor model in CHEMKIN are adopted to simulate the reactions processes. It is found that there is a conversion temperature point (CTP), on the two sides of which oxygen performs different effect. Below CTP, which is 1273 K in our experiments, higher NO reduction efficiency can be gained with higher oxygen concentration because more O2 results in more radicals to drive the reduction chain reactions by speeding up the reactions O2 + H = O + OH and H2O + O = 2OH. At 1473 K without oxygen, 60% of NO reduction efficiency can be achieved and a 15 ppm Na2CO3 addition improves it to 90%. In this case the reaction H2O + H = OH + H2 becomes fast enough to provide the radical OH without the aid of O2 to produce NH2 which reduces NO. And H2 is the byproduct of this reaction. Na2CO3 addition shifts the optimal temperature of SNCR 50 K towards lower temperature and more NO is removed in the temperature window. The reactions NaO + H2O = NaOH + OH and NaOH + O2 = NaO2 + OH and NaOH + M = Na + M + OH offer new pathways to produce OH radical, which results in more OH and more NH2 to reduce NO. The promotion effect of Na2CO3 is significant when temperature is lower or O2 concentration is lower, which means the radicals are insufficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号