首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallurgical and Materials Transactions A - The as-built Ti6Al4V component was subjected to a heat treatment of solid solution at 1020 °C for 2 hours and followed by aging at...  相似文献   

2.
3.
Metallurgical and Materials Transactions A - The effects of heat treatment on the hardness and electrochemical behavior of the Ti6Al4V alloy were studied. Two heat treatments were performed: one...  相似文献   

4.
Alloy718 specimens built by selective laser melting (SLM) and electron beam melting (EBM) were comparatively examined. The higher cooling rate resulted in a high dislocation density and interdendritic precipitates, which brought about inferior creep properties in SLM alloys. However, a low dislocation density, distributed δ precipitates and a strong 〈001〉 texture were observed in the EBM material. As a result, the creep life of the direct-aged EBM specimen approached 1100 hours and was comparable to that of conventional cast-and-wrought alloys at 650 °C.  相似文献   

5.
Aligned, unidirectional, elongated pores were incorporated in Ti-6Al-4V products fabricated by electron beam melting in order to control the mechanical properties of the products such that they became suitable for biomedical applications. Unidirectional pores were successfully produced when the scan spacing of the electron beam was greater than the diameter of the beam. By changing the scan spacing of the electron beam, the size of the unidirectional pores could be varied. As a result, both the Young’s moduli and the yield stresses of the products with unidirectional pores decreased linearly with an increase in their porosity, owing to the stress concentration coefficient being 1 in the equation representing the relation between strength and porosity for porous materials. Further, low (<35 GPa) Young’s moduli were obtained when the scan spacing was 1 mm or higher, with these values being were close to the typical Young’s modulus of human cortical bone. This suggested that these porous materials could be used to fabricate customized bone implants that exhibited desired mechanical properties and suppressed the stress shielding of bone that is normally noticed when implants made of Ti alloys are used.  相似文献   

6.
水基凝胶注Ti-6Al-4V合金坯体   总被引:1,自引:0,他引:1  
将凝胶注模工艺应用于金属Ti6Al4V合金粉末的成形,研究了高固相含量的Ti6Al4V合金粉末的料浆的制备,比较了金属浆料与陶瓷浆料的不同。结果表明粉末的颗粒形状是影响浆料固相含量的重要因素,浆料的固相含量随分散剂的增加而增加。最后制备出了固相含量为54%(体积分数,下同)的钛合金粉末浆料和形状复杂的坯体。坯体的抗弯强度随气雾化(GA)Ti6Al4V含量增加先增大后减小,随着坯体的固相含量增大而减小。当GA-Ti6Al4V含量为80%,固相含量为50%时生坯抗弯强度最大,为18.5 MPa。  相似文献   

7.
采用热等静压(HIP)工艺连接Al12A12和Ti6Al4V两种不同的航空航天用材料.利用扫描电镜、能谱仪和X射线衍射仪观察连接过渡区的微观组织和组成的演化,并测试其主要的力学性能.结果表明:采用热等静压制备这两种材料的界面连接好;Ti/Al反应层界面处形成了不同的金属间化合物,例如,Al3 Ti、TiAl2和TiAl;连接接头处硬度为163 HV,界面连接处剪切强度达到了23 MPa,比只添加镀层而无中间层的连接强度提高了约17.9%,但低于带有中间层的连接强度.由于过烧和孔隙的形成使得断裂方式是脆性断裂.由此可知,在热等静压成形过程中异种材料的元素发生了相互扩散,在扩散连接处形成了不同的金属间化合物,这些金属间化合物影响连接处的力学性能.   相似文献   

8.
Laser cladding experiment of Ti + Al + SiO2 + C was carried out on Ti6Al4V alloy substrate, thenthe microstructure of the clad layer was analyzed with SEM and its Anti - oxidation function was discussed.Analyses microstructure show that the clad coating can be divided into three zones along the depth direction:clad, binding and heat - affected zones. Ti5Si3 in the clad zone exists in the form of fine dendrites, TiAl matrix filling among Ti5Si3 dendrites plays a role of connecting the Ti5Si3 with the TiAl3 and transferring load,so the clad coating has been strengthened obviously.  相似文献   

9.
Laser cladding experiment of Ti + Al + SiO2 + C was carried out on Ti6Al4V alloy substrate, then the micmstructure of the clad layer was analyzed with SEM and its Anti - oxidation function was discussed. Analyses microstructure show that the clad coating can be divided into three zones along the depth direction: clad, binding and heat -affected zones. Ti5Si3 in the clad zone exists in the form of fine dendrites, TiAI matrix filling among Ti5Si3 dendrites plays a role of connecting the Ti5Si3 with the TiAl3 and transferring load, so the clad coating has been strengthened obviously.  相似文献   

10.
Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.  相似文献   

11.
12.
The Ti6Al4V/(Ni/Al)/Ti6Al4V joints were obtained through reactive resistance welding which takes advantage of electric current heating to initiate the rapid exothermic reaction of Ni(V)/Al multilayers and activate diffusion of elements across the Ni/Al-Ti6Al4V interfaces. Simulations of temperature distribution, carried out using COMSOL® software, showed temperature gradient in the joint being a result of differences in resistivity of the Ti6Al4V alloy and the (Ni/Al)/Ti6Al4V interface. Shear tests revealed that extending duration of the process from 2 to 6 minutes helped to improve the shear strength from ~?240 to ~?335 MPa. The microstructure observations of the samples after those tests showed that de-cohesion of the joint occurred along the filler material/base material interface. A microcrack network characteristic for reacted Ni/Al foil with small ridges was found on the flat surfaces of fractured samples.  相似文献   

13.
14.
Metallurgical and Materials Transactions A - High-temperature mechanical behaviors of metal alloys and the underlying microstructural variations responsible for such behaviors are important areas...  相似文献   

15.
The effect of the laser beam on chip formation when machining Ti6Al4V alloy has been investigated at different cutting speeds and laser powers. The characteristics of the segmented chip produced by laser-assisted machining (LAM) in terms of the tooth depth and tooth spacing were strongly dependent on the cutting speed and laser power. Two types of segmented chip formation processes were observed, one at low and the other at high cutting speeds with a continuous chip occurring between these two types of segmented chips. The critical cutting speed at which the transition from the sharp, segmented chip to the continuous chip occurred increased with laser power. To obtain the continuous chip, plastic deformation at the shear zone to match the deformation strain introduced by the cutting tool is required. This can be achieved by laser heating the material in front of the cutting tool. A physical model is proposed to explain qualitatively the chip segmentation in conventional machining and the continuous chip transition at high cutting speed with the application of a laser beam.  相似文献   

16.
采用热浸镀法在Ti6Al4V合金表面制备出TiAl3金属间化合物涂层,并在不同温度下对浸镀后的试样进行热扩散处理.通过XRD、SEM等分析手段对涂层结构和成分进行测试分析,探讨涂层形成机理.结果表明:Ti6Al4V合金经750℃ 5 min热浸铝后,在其表面形成了由纯铝和TiAl3组成的涂层,TiAl3合金层厚约1.5 μm;经550℃退火5h后,TiAl3含量增多而纯铝层含量则相应减少,纯铝层几近消失,合金层厚度约为40μm,涂层致密;经930℃退火5h后,表面的涂层转化为单相的TiAl3,产物纯净,但涂层中出现了较多的孔洞,自涂层表面到钛合金基体,孔洞浓度呈梯度变化.  相似文献   

17.
Laser beam welding is based on interaction between the laser beam and parent metals. Methods have been developed in recent years to produce joints of most light metals and their combinations. It provides good weld joint to simplify the structure and reduce the weight and cost to meet the main concerns of the aircraft industry. To achieve these, Ti6Al4V and AA2024 alloy sheets with a thickness of 1.0 mm have been welded with butt joint configuration using pulsed Nd:YAG laser beam welding without groove and filler metal. The weldment has been subjected to testings such as surface roughness, microstructure, hardness, tensile strength and distortion. Test results reveal that laser beam welding is very much suitable for joining Ti6Al4V/AA2024 alloys, while focusing from aluminium side.  相似文献   

18.
This work deals with the influence of surface mechanical attrition treatment (SMAT) duration on fatigue lives of Ti–6Al–4V. The SMAT process was carried out in vacuum with SAE 52100 steel balls of 5 mm diameter for 30 and 60 min at a vibrating frequency of 50 Hz. SMAT treated surface was characterized by electron microscopy. Surface roughness, nano-indentation hardness, residual stress, and tensile properties of the material in both SMAT treated and untreated conditions were determined. SMAT enabled surface nanocrystallization, increased surface roughness, surface hardness, compressive residual stress and tensile strength but reduced ductility. Samples treated for 30 min exhibited superior fatigue lives owing to positive influence of nanostructured surface layer, compressive residual stress and work hardened layer. However, fatigue lives of the samples treated for 60 min were inferior to those of untreated samples due to presence of microdamages or cracks induced by the impacting balls during the treatment.  相似文献   

19.
Laser butt welds were fabricated in a titanium alloy (Ti-6A1-4V, AMS 4911-Tal0 BSS, annealed) using a Control Laser 2 kW CW CO2 laser. The relationships between the weld microstructure and mechanical properties are described and compared to the theoretical thermal history of the weld zone as calculated from a three-dimensional heat transfer model of the process. The structure of the weld zone was examined by radiography to detect any gross porosity as well as by both optical and electron microscopy in order to identify the microstructure. The oxygen pick-up during gas shielded laser welding was analyzed to correlate further with the observed mechanical properties. It was found that optimally fabricated laser welds have a very good combination of weld microstructure and mechanical properties, ranking this process as one which can produce high quality welds.  相似文献   

20.
Oxidation of Ti6Al4V is studied by X-ray photoelectron spectroscopy (XPS). Oxide layer growth was monitored on the Ti6Al4V surface for 24 hours. The surface was previously etched with Ar+ ions under ultra-high vacuum conditions. XPS spectra show that TiO and Ti2O3, together with Al2O3, were the earliest oxides formed. Vanadium, despite being detected in its elementary form in the bulk, was not found in any of its oxidized states. TiO2, directly related to the good performance of Ti6Al4V for biomedical applications, did not contribute significantly to the passive layer at the beginning; nevertheless, it was identified after the oxidation process progressed to a more advanced stage. This behavior indicates that reoxidation of Ti6Al4V permits auto-healing of its passive layer, with the presence of TiO2, even in conditions of low oxygen availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号