首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new aluminophosphate compound |(CH2)6N4H3·H2O|[Al11P12O48] (denoted AlPO-CJB2) with a three-dimensional open framework and an Al/P ratio of 11/12 has been synthesized solvothermally by using hexamethylenetetramine as a template. It was characterized by X-ray powder diffraction, inductively coupled plasma, elemental (CHN), and thermogravimetric analyses, and the structure was determined by single-crystal X-ray diffraction analysis. AlPO-CJB2 crystallizes in the trigonal space group R-3c with a=14.088(2) Å, c=42.199(9) Å, and Z=6. Its structure features two new kinds of cages, i.e., cage 1, 412436686 and cage 2, 412612. The two cages alternate along the [0 0 1] direction forming an infinite column by sharing a common snowflake-like chiral motif, which is constructed from an AlO6-centered six four-membered rings. The title compound is constructed from strictly alternating Al polyhedra (AlO4 and AlO6) and P tetrahedra (PO4) via bridging oxygen atoms, and presents a new type of stoichiometry with an Al/P ratio of 11/12 in the aluminophosphate family. Computer simulation was used to determine the possible positions of the organic template within the cages.  相似文献   

2.
Three compounds, K2(H2O)4H2SiMo12O40 · 7H2O (1), K2Na2(H2O)4SiW12O40 · 4H2O (2), and Na4(H2O)8SiMo12O40 · 6H2O (3) have been synthesized and structurally characterized by single-crystal X-ray analysis, IR, and thermogravimetry. Compounds 1 and 2 both show the high symmetry trigonal space group P3221 and a novel 3D network structure. The Keggin anions [SiM12O40]4−(M = Mo, W) are linked by potassium or sodium cations to generate hexagon-shaped channels along the c-axis, in which water molecules are accommodated. Compound 3 is tetragonal, space group P4/mnc constructed from [SiMo12O40]4− anions and Na ions.  相似文献   

3.
The synthesis and structure of (CH3CH[NH3]CH2NH3)1/2·ZnPO4, an organically templated zincophosphate (ZnPO) analogue of aluminosilicate zeolite thomsonite (THO), are described. The ZnPO framework is built up from an alternating, vertex-sharing, network of ZnO4 and PO4 groups (dav(Zn–O)=1.944 (8) Å, dav(P–O)=1.535 (9) Å, θav(Zn–O–P)=130.5°) involving distinctive 4=1 secondary building units. The 1,2-diammonium propane cations are highly disordered in the [0 0 1] 8-ring channels. Crystal data: (CH3CH[NH3]CH2NH3)1/2·ZnPO4, Mr=198.42, orthorhombic, space group Pncn (no. 52), a=14.119 (6) Å, b=14.136 (5) Å, c=12.985 (5) Å, V=2591 (3) Å3, Z=10, R(F)=0.057, Rw(F)=0.061 (for a twinned crystal).  相似文献   

4.
Complete Ni2+ exchange of a single crystal of zeolite X of composition Na92Si100Al92O384 per unit cell was attempted at 73°C with flowing aqueous 0.05 M NiCl2 (pH=4.3 at 23°C). After partial dehydration at 23°C and ≈10−3 Torr for two days, its structure, now of composition Ni2(NiOH)35(Ni4AlO4)2(H3O)46Si101Al91O384 per unit cell, was determined by X-ray diffraction techniques at 23°C (space group Fd , a0=24.788(5) Å). It was refined using all intensities; R1=0.080 for the 236 reflections for which Fo>4σ(Fo), and wR2=0.187 using all 1138 unique reflections measured. At four crystallographic sites, 45 Ni2+ ions were found per unit cell. Thirty of these are at two different site III′ positions. Twenty of those are close to the sides of 12-rings near O–Si–O sequences, where each coordinates octahedrally to two framework oxygens, to three water molecules which hydrogen bond to the zeolite framework, and to an OH ion. The remaining 10 are near O–Al–O sequences; only three members of a likely octahedral coordination sphere could be found. In addition, two Ni2+ ions are at site I, eight are at site I′, and five are at site II. Forty six H3O+ ions per unit cell, 24 at site II′ and 22 at site II, each hydrogen bond triply to six rings of the zeolite framework. Each of the 22 H3O+ ions also hydrogen bonds to a H2O molecule that coordinates to a site III′ Ni2+ ion. Six of the eight sodalite cages each contain four H3O+ ions at site II′; the remaining two each contains a tetrahedral orthoaluminate anion at its center. Each tetrahedral face of each orthoaluminate ion is centered by a site I′ Ni2+ ion to give two Ni4AlO4 clusters. The five site II Ni2+ ions each coordinate to a OH ion. With 46 H3O+ ions per unit cell, the great tendency of hydrated Ni2+ to hydrolyze within zeolite X is demonstrated. With a relatively weak single-crystal diffraction pattern, with dealumination of the zeolite framework, and with an apparent decrease in long-range Si/Al ordering likely due to the formation of antidomains, this crystal like others treated with hydrolyzing cations appears to have been damaged by Ni2+ exchange and partial dehydration.  相似文献   

5.
Layered double hydroxide pillared by Paratungstate A ion, Mg12Al6(OH)36(W7O24)·4H2O, was prepared via anion exchange reaction of the synthetic precursor, Mg4Al2(OH)12TA·xH2O (TA2−=terephthalate), and [W7O24]6− ion. Some physico-chemical properties were measured and the preparation conditions were studied. Trace aqueous organocholorine pesticide, hexachlorocyclohexane (HCH), was totally degraded and mineralized into CO2 and HCl by irradiating a Mg12Al6(OH)36(W7O24)·4H2O suspension in the near UV area. Disappearance of trace HCH follows Langmuir–Hinshelwood first-order kinetics. The model and mechanism for the photocatalytic degradation of HCH on the Mg12Al6(OH)36(W7O24)·4H2O were proposed, indicating that the interlayer space is the reaction field, and that photogeneration of OH√ radicals are responsible for the degradation pathway.  相似文献   

6.
Fine powders of submicron-sized crystallites of BaTiO3 were prepared at 85–130°C by the hydrothermal method, starting from TiO2.ξH2O gel and Ba(OH)2 solution. The products obtained below 110°C incorporated considerable amounts of H2O and OH in the lattice. As-prepared BaTiO3 is cubic and converts to the tetragonal phase after heat treatment at 1200°C, accompanied by the loss of residual OH ions. Hydrothermal reaction of SnO2.ξH2O gel with Ba(OH)2 at 150–260°C gives rise to the hydrated phase, BaSn(OH)6.3H2O, due to the amphoteric nature of SnO2.ξH2O which stabilises Sn(OH)62− anions in basic media. On heating in air or releasing the pressure in situ at 260°C, BaSn(OH)6.3H2O converts to BaSnO3 through an intermediate, BaSnO(OH)4. Solid solutions of Ba(Ti,Sn)O3 are directly formed from (TiO2 + SnO2)..ξH2O gel up to 35 mol% SnO2. At higher Sn contents, the hydrothermal products are mixtures of BaSn(OH)6.3H2O and BaTiO3, which on annealing at 1000°C result in monophasic Ba(Ti,Sn)O3. The sintering characteristics and the dielectric properties of the ceramics prepared out of these fine powders are presented. The dielectric properties of fine-grained Ba(Ti,Sn)O3 ceramics are explained on the basis of the prevailing diffuse phase transition behaviour.  相似文献   

7.
The hydrothermal transformation of calcium aluminate hydrates were investigated by in situ synchrotron X-ray powder diffraction in the temperature range 25 to 170 °C. This technique allowed the study of the detailed reaction mechanism and identification of intermediate phases. The material CaAl2O4·10H2O converted to Ca3Al2(OH)12 and amorphous aluminum hydroxide. Ca2Al2O5·8H2O transformed via the intermediate phase Ca4Al2O7·13H2O to Ca3Al2(OH)12 and gibbsite, Al(OH)3. The phase Ca4Al2O7·19H2O reacted via the same intermediate phase to Ca3Al2(OH)12 and mainly amorphous aluminum hydroxide. The powder pattern of the intermediate phase is reported.  相似文献   

8.
The synthesis of a novel 3D aluminophosphate is described. The thermal properties of the material were investigated, and the existence of three high-temperature variants was revealed. The crystal structures of the as-synthesized material (UiO-26-as) and the material existing around 250°C (UiO-26-250) were solved from powder X-ray diffraction data. UiO-26-as with the composition [Al4O(PO4)4(H2O)]2−[NH3(CH2)3NH3]2+ crystallizes in the monoclinic space group P21/c (no. 14) with a=19.1912(5), b=9.3470(2), c=9.6375(2) Å and β=92.709(2)°. It exhibits a 3D open framework consisting of connections by PO4 tetrahedra with AlO4 tetrahedra, AlO5 trigonal bipyramids and AlO5(H2O) octahedra forming two types of layers stacked along [1 0 0] and connected by Al–O–P bondings. The structure possesses a 1D 10-ring channel system running along [0 0 1], in which doubly protonated 1,3-diaminopropane molecules are located. UiO-26-250 with the composition [Al4O(PO4)4]2−[NH3(CH2)3NH3]2+ crystallizes in the monoclinic space group P21/c with a=19.2491(4), b=9.27497(20), c=9.70189(20) Å and β=93.7929(17)°. The transformation to UiO-26-250 involves removal of the water molecule which originally is coordinated to aluminum. The rest of the structure remains virtually unchanged. The crystal structures of the two other variants existing around 400 (UiO-26-400) and 600°C (UiO-26-600) remain unknown.  相似文献   

9.
SAPO-56 (framework type: AFX) has a framework topology slightly different from that of zeolite chabazite (framework type: CHA). While metal substituted aluminophosphate chabazite analogues can be prepared under a variety of experimental conditions with dozens of different amines, the synthesis of SAPO-56 type materials has been more difficult, particularly in non-SAPO compositions. Prior to this work, the growth of large crystals of the AFX-type materials suitable for single crystal diffraction has not been possible in any composition. Here we report the synthesis and single crystal structure of a magnesium aluminophosphate denoted as MAPO-AFX. This represents the first time that the AFX-type topology is made in a metal aluminophosphate composition. The synthesis was accomplished with a novel polyether diamine as the structure-directing agent. Crystal data for MAPO-AFX, (RH2)0.10(NH4)0.45[Mg0.65Al1.35(PO4)2](H2O) where R=O[CH2CH2O(CH2)3NH2]2, space group P-31c (#163), Z=12, MoK radiation, 2θmax=50°, a=13.8425(6) Å, c=20.204(1) Å, V=3352.7(3) Å3, refinement on F2, R(F)=7.94% for 131 parameters and 1218 unique reflections with I>2.0σ(I).  相似文献   

10.
A new mixed-valent iron MOF, formulated as Fe3O(F4BDC)3(H2O)3·(DMF)3.5 (1), has been synthesized by using a perfluorinated linear dicarboxylate to link trigonal prismatic Fe33-O)(O2C–)6 clusters. The structure refinement based on single crystal X-ray diffraction data collected from 1 reveals the material exhibits the acs topology with large channels along the crystallographic c-axis. Due to the presence of fluorine atoms the organic link, 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate (F4BDC), has a 63° torsion angle between the carboxylate and aromatic planes, resulting in larger channels compared to those in the isoreticular material MOF-235. While few iron-based MOFs have demonstrated porosity, nitrogen and hydrogen sorption experiments carried out at 77 K proved the porosity of outgassed 1, which has a Langmuir surface are of 635 m2/g and a gravimetric capacity of 0.9 wt% of hydrogen at 1 bar.  相似文献   

11.
The inhibition effect of H2O on V2O5/AC catalyst for NO reduction with NH3 is studied at temperatures up to 250 °C through TPD, elemental analyses, temperature-programmed surface reaction (TPSR) and FT-IR analyses. The results show that H2O does not reduce NO and NH3 adsorption on V2O5/AC catalyst surface, but promotes NH3 adsorption due to increases in Brønsted acid sites. Many kinds of NH3 forms present on the catalyst surface, but only NH4+ on Brønsted acid sites and a small portion of NH3 on Lewis acid sites are reactive with NO at 250 °C or below, and most of the NH3 on Lewis acid sites does not react with NO, regardless the presence of H2O in the feed gas. H2O inhibits the SCR reaction between the NH3 on the Lewis acid sites and NO, and the inhibition effect increases with increasing H2O content. The inhibition effect is reversible and H2O does not poison the V2O5/AC catalyst.  相似文献   

12.
The single gas H2 and N2 permeability of a 4 μm thick dense fcc-Pd66Cu34 layer has been studied between room temperature and 510 °C and at pressure differences up to 400 kPa. Above 50 °C the H2 flux exhibits an Arrhenius-type temperature dependence with JH2=(5.2±0.3) mol m−2 s−1 exp[(−21.3 ± 0.2) kJ mol−1/(R·T)]. The hydrogen transport rate is controlled by the bulk diffusion although the pressure dependence of the H2 flux deviates slightly from Sieverts’ law. A sudden increase of the H2 flux below 50 °C is attributed to embrittlement.  相似文献   

13.
The perovskite-type compounds Ln0.6Sr0.4Co0.2Fe0.8O3−δ (Ln=Ce, Sm, Gd, Dy) used as the cathodes of intermediate temperature solid oxide fuel cell (IT-SOFC) were studied. The cells consisted of anode supported Sm-doped-ceria electrolyte bi-layer and cathode with 0.65 cm2 effective area. Open-circuit voltage (OCV), VI and PI curves of the cells were measured over a temperature range from 400 to 800 °C, using H2–3%H2O as fuel and air as oxidant. Polarization potential of electrodes were measured with asymmetry three-electrode method during cell discharging. The results indicated that, Dy-SCF material cathode behaved with high catalytic activity for oxygen dissociation at low temperatures. For each cell with a particular cathode, there was a transition temperature, at which OCV of the cell reached the highest value. When temperature was higher than the transition temperature, OCV of the cell increases with decreasing temperature, whereas as temperature was lower than that, OCV decreased with lowering temperature.  相似文献   

14.
Both NO decomposition and NO reduction by CH4 over 4%Sr/La2O3 in the absence and presence of O2 were examined between 773 and 973 K, and N2O decomposition was also studied. The presence of CH4 greatly increased the conversion of NO to N2 and this activity was further enhanced by co-fed O2. For example, at 773 K and 15 Torr NO the specific activities of NO decomposition, reduction by CH4 in the absence of O2, and reduction with 1% O2 in the feed were 8.3·10−4, 4.6·10−3, and 1.3·10−2 μmol N2/s m2, respectively. This oxygen-enhanced activity for NO reduction is attributed to the formation of methyl (and/or methylene) species on the oxide surface. NO decomposition on this catalyst occurred with an activation energy of 28 kcal/mol and the reaction order at 923 K with respect to NO was 1.1. The rate of N2 formation by decomposition was inhibited by O2 in the feed even though the reaction order in NO remained the same. The rate of NO reduction by CH4 continuously increased with temperature to 973 K with no bend-over in either the absence or the presence of O2 with equal activation energies of 26 kcal/mol. The addition of O2 increased the reaction order in CH4 at 923 K from 0.19 to 0.87, while it decreased the reaction order in NO from 0.73 to 0.55. The reaction order in O2 was 0.26 up to 0.5% O2 during which time the CH4 concentration was not decreased significantly. N2O decomposition occurs rapidly on this catalyst with a specific activity of 1.6·10−4 μmol N2/s m2 at 623 K and 1220 ppm N2O and an activation energy of 24 kcal/mol. The addition of CH4 inhibits this decomposition reaction. Finally, the use of either CO or H2 as the reductant (no O2) produced specific activities at 773 K that were almost 5 times greater than that with CH4 and gave activation energies of 21–26 kcal/mol, thus demonstrating the potential of using CO/H2 to reduce NO to N2 over these REO catalysts.  相似文献   

15.
Combined effect of H2O and SO2 on V2O5/AC the activity of catalyst for selective catalytic reduction (SCR) of NO with NH3 at lower temperatures was studied. In the absence of SO2, H2O inhibits the catalytic activity, which may be attributed to competitive adsorption of H2O and reactants (NO and/or NH3). Although SO2 promotes the SCR activity of the V2O5/AC catalyst in the absence of H2O, it speeds the deactivation of the catalyst in the presence of H2O. The dual effect of SO2 is attributed to the SO42− formed on the catalyst surface, which stays as ammonium-sulfate salts on the catalyst surface. In the absence of H2O, a small amount of ammonium-sulfate salts deposits on the surface of the catalyst, which promote the SCR activity; in the presence of H2O, however, the deposition rate of ammonium-sulfate salts is much greater, which results in blocking of the catalyst pores and deactivates the catalyst. Decreasing V2O5 loading decreases the deactivation rate of the catalyst. The catalyst can be used stably at a space velocity of 9000 h−1 and temperature of 250 °C.  相似文献   

16.
何媚质  杨鲁伟  张振涛 《化工学报》2017,68(11):4016-4024
CaCl2·6H2O作为一种常见的常温无机水合盐相变材料,由于成本低、易获取、蓄热强而受到广泛的关注。按无水CaCl2与H2O的质量比为1.027:1制备了CaCl2·6H2O,经X射线衍射(XRD)表征其晶体结构;通过添加成核剂SrCl2·6H2O和Ba(OH)2对CaCl2·6H2O改性,发现两者的联合作用可抑制过冷,10次熔化-冷却循环平均过冷度1.07℃。采用差示扫描量热仪(DSC)测定CaCl2·6H2O添加成核剂前后相变潜热,发现潜热由223.54 J·g-1降至160.41 J·g-1;为了扩大CaCl2·6H2O相变温度的范围,通过添加质量分数分别为5%、10%、15%、20%和25%的MgCl2·6H2O,发现相变温度随MgCl2·6H2O质量分数的升高呈线性降低,但不宜超过20%;选取CaCl2·6H2O-20% MgCl2·6H2O二元共晶盐相变储热体系为改性目标,通过添加1% SrCl2·6H2O和0.5% CMC,过冷度降至0.57℃,相变潜热为141.09 J·g-1,低于单独组成盐CaCl2·6H2O的潜热223.54 J·g-1和MgCl2·6H2O的潜热163.35 J·g-1。研究表明,CaCl2·6H2O作为无机相变材料具有显著的应用价值。  相似文献   

17.
采用水热和沉淀两步合成法制备AgBr/Zn3(OH)2V2O7·2H2O催化剂,研究其在可见光下降解亚甲基蓝溶液的性能,并考察催化剂用量、亚甲基蓝溶液初始浓度、pH值以及盐浓度对光催化性能的影响,评价AgBr/Zn3(OH)2V2O7·2H2O催化剂的重复使用性能。结果表明,在前驱液pH为10、120 ℃水热10 h、Ag与Br物质的量比为0.20条件下制备的复合催化剂在可见光下反应120 min后,1.0 g·L-1的催化剂对10 mg·L-1的亚甲基蓝溶液脱色率达到85.2%。NaCl对亚甲基蓝的降解起抑制作用,Na2SO4对亚甲基蓝的降解起促进作用。催化剂重复使用4次后,光照120 min后的亚甲基蓝溶液脱色率可达66.4%。催化剂对不同初始浓度亚甲基蓝溶液的光催化降解符合一级动力学模型。  相似文献   

18.
Three metal-organic framework compounds [HZn3(OH)(BTC)2(2H2O) (DMF)] · H2O (MOF-CJ3), [Co6(BTC)2(HCOO)6(DMF)6] (MOF-CJ4), and [Co18(HCOO)36] · 3H2O (MOF-CJ5) have been solvothermally synthesized in mixed solvents of DMF and HAc, respectively. These MOFs are characterized by single-crystal X-ray diffraction, X-ray powder diffraction, ICP, TG analyses, IR, and photoluminescence spectroscopy analyses. MOF-CJ3 crystallizes in tetragonal, space group I4cm (No. 108) with a = 20.588(3) Å, b = 20.588(3) Å, c = 17.832(4) Å. Its framework can be described as a 3D decorated (3, 6)-connected net based on the assembly of trigonal prismatic SBUs and triangular links. MOF-CJ4 crystallizes in hexagonal, space group P-3 (No. 147) with a = 13.975(2) Å, b = 13.975(2) Å, c = 8.1650(16) Å. The 2D network of MOF-CJ4 is constructed from [Co6(R(CO2)3)2(HCO2)6(DMF)6] (R = C9H3–) clusters and 1,3,5-benzene-tricarboxylates linkers. MOF-CJ5 crystallizes in triclinic, space group (No. 2) with a = 15.205(3) Å, b = 18.005(4) Å, c = 21.500(4) Å,  = 71.21(3)°, β = 84.47(3)°, γ = 67.15(3)°. MOF-CJ5 has a diamond framework with Co-centered CoCo4 tetrahedra as nodes. It is noteworthy that the formic ligands in MOF-CJ4 and MOF-CJ5 are generated by the decomposition of DMF under acid conditions and incorporated into these two compounds.  相似文献   

19.
Levyne-type zeolites were synthesized from gels of initial compositions 4.5Na2O-6MeQI-xAl2O3 30SiO2-500H2O, with MeQ = methylquinuclidinium and 0.6 ≤ x ≥ 3 at 150 ≤ t ≥ 190 °C. The 29Si NMR spectra show the presence of two crystallographically different sites in the structure. The 27Al NMR spectra also suggest the presence of two different tetrahedral Al atoms incorporated in the structure. A rather high amount of defect groups SiOM and Si(OM)2 with M = MeQ, Na and/or H are present in the precursor samples. The Si(OM)2 groups are eliminated during calcination, and a certain amount of SiOM still persists after calcination. The combined 13C NMR and thermal analysis data allowed one to interpret the nature of the two different types of MeQ+ ions occluded in the levyne channels.  相似文献   

20.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号