首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
根据煤液化残渣的组成特点,选取不同馏分段的煤液化油和煤焦油洗油作为溶剂进行了残渣萃取分离实验研究.结果表明,在常温下,溶剂和残渣质量比为2∶1时,馏程为137℃~213℃的煤液化油对煤液化残渣的萃取率(干燥基)为22.85%,与煤液化残渣中的正己烷可溶物含量相当;馏程为230℃~317℃的煤焦油洗油,对煤液化残渣的萃取率为44.63%,与煤液化残渣中的四氢呋喃可溶物含量相当.采用煤液化油和煤焦油洗油对煤液化残渣进行了两级萃取分离,得到了萃取物和萃余物,并分别在煤加氢液化循环溶剂和水煤浆制备等应用方面进行了探索性研究.  相似文献   

2.
在喷动–载流床内对霍林河褐煤进行了快速热解,考察了0.125~0.28 mm范围内煤粉颗粒粒径对煤热解总失重、热解产物产率以及气体和液体产物具体组成的影响. 气体和液体产物的组成分别利用气相色谱和色质联用仪分析. 实验表明, 随颗粒粒径增大,煤中挥发份脱出率略有降低,半焦产率略有升高,气体总产率增大,CH4,无机气体,C2H6,C3H8等呈现上升趋势. 而随颗粒粒径增大,液体产率降低,其中沥青质的降低较为显著. 正己烷可溶物产率随颗粒粒径增加有少许降低. 热解水产率随着颗粒粒径的增大而增加. 颗粒粒径对正己烷可溶物中的各类组份的含量也有一定的影响.  相似文献   

3.
煤直接液化的关键是催化剂体系的优化。文中采用小型加氢反应装置和多种仪器分析方法,研究了铁系催化剂催化淖毛湖煤直接加氢液化反应性能及过程杂原子分布特征。发现升华S作为助剂较SO_4~(2-)催化效果更好;FeOOH和S对沥青质有较好的催化转化作用。复合Fe/Ni催化活性较单Fe活性略低,对沥青质的转化效果较差。液化产物中正己烷可溶组分含有较多的正构烷烃,碳数可达到C_(28)。含氮杂环化合物中,主要含喹啉和异喹啉。含硫杂环化合物主要为噻吩类,苯并噻吩类和苯硫醚等。硫化物部分来自原煤并与添加的硫助剂有关。液化过程中氧元素和硫元素反应活性较高,氮元素反应活性较低,其在液化残渣中的含量几乎不变。  相似文献   

4.
对神华煤加氢液化残渣依次使用正庚烷、甲苯、吡啶进行萃取,分别得到正庚烷可溶物(HS)、正庚烷不溶-甲苯可溶物(HI-TS)以及甲苯不溶-吡啶可溶物(TI-PS)3种可溶组分。分别以HI-TS及TI-PS两种组分为原料,采用直接热缩聚法,制备了中间相沥青(MP)。通过偏光显微镜、凝胶渗透色谱(GPC)等仪器分析手段对合成的中间相沥青进行了形貌及组成表征。实验结果表明:HI-TS组分在反应温度380℃,反应时间为6 h,TI-PS组分在反应温度380℃,反应时间4 h,均生成了光学组织结构好、中间相含量近100%的中间相沥青。  相似文献   

5.
神华煤液化残渣的加氢反应动力学   总被引:3,自引:0,他引:3       下载免费PDF全文
徐蓉  王国龙  鲁锡兰  李洋洋  张德祥 《化工学报》2009,60(11):2749-2754
在微型反应管中,以神华煤液化残渣为原料,四氢萘为溶剂,在氢初压6 MPa、反应温度425~485℃、反应时间为0~30 min条件下,进行了煤液化残渣加氢实验,研究了煤液化残渣的加氢动力学特性。将氢化产物分为油气、沥青质和四氢呋喃不溶有机质,根据集总概念建立了煤液化残渣的加氢动力学模型,所建模型与实验值吻合程度高。在实验条件下,四氢呋喃不溶有机质向沥青质转化的活化能为147.41 kJ·mol-1,沥青质向油气转化的活化能为34.81 kJ·mol-1,沥青质缩合为四氢呋喃不溶有机质的活化能为173.48 kJ·mol-1。  相似文献   

6.
喷动载流床中温度对霍林河褐煤快速热解产物的影响   总被引:8,自引:1,他引:8  
在喷动载流床反应器内对霍林河褐煤的快速热解进行了研究,并对该煤的热解机理进行了初步分析。考察了在500~850℃范围内温度对热解产品产率分布及气体和液体产品具体组成的影响。分别利用气相色谱和色质联用仪来分析气体和液体产物的组成。实验结果表明,气体总产率及CO、H2和C1~5烃类的产率随热解温度的提高而增大;在热解温度为650℃时,液体产率最高,在煤粉粒径为0.125~0.18mm,液体产品的总产率可达23%,其中正己烷可溶物的产率可达30%以上,沸点340℃前馏分也达30%以上。液体产品中酚类产品较多;温度对液体产品的组成有极大的影响。  相似文献   

7.
实验选用500 g级基于热重系统热解装置研究了神华液化残渣与神东煤共热解特性。结果表明,在反应器侧壁温度为200~600℃区间内,同一时刻,随着液化残渣配比的增加,热解胶质层比例增加,热解过程中传热加剧,煤样中心温度逐渐升高;液化残渣配比为20%时,煤样中心温度最高。液化残渣配比由0%增加至25%时,热解总失重量逐渐减小,焦油收率逐渐升高,热解特性趋好。当液化残渣比例由10%增加至25%时,半焦粘结加剧,3~6 mm粒级产率由51.99%降至34.03%,大于6 mm粒级占比由39.82%增加到57.06%;当液化残渣配比达到20%时,有一半以上的半焦粒度增加。  相似文献   

8.
对油页岩在不同终温热解所得半焦进行溶剂萃取,得到了热解中间产物(热解沥青)和终产物.采用气相色谱-质谱联用仪分析了热解沥青和页岩油的组成,采用热裂解-气相色谱-质谱联用仪检测了热解沥青的裂解产物,并与热解页岩油进行对比,研究了油页岩热解沥青的反应特性.结果表明,油页岩热解沥青在最快产油阶段生成最多且稳定存在,375℃时收率最大;375~400℃时热解产油速率最大,热解沥青收率下降,表明热解沥青在高温下不稳定,有机质生成中间产物后便转化成终产物.随热解温度升高,热解沥青中轻质组分含量增加.杂原子化合物最先从有机质上断裂进入中间产物,而热解油中烯烃化合物大部分来自有机质直接裂解,来自热解沥青裂解的较少.热解温度升高,热解沥青的裂解产物中烯烃含量增加,且热解沥青中芳香烃的长侧链易通过裂解变短.  相似文献   

9.
为实现煤直接液化残渣的清洁、高效利用,利用管式炉进行液化残渣的热解实验,研究了残渣热解气体析出产率、速率及气体组成随温度的变化规律。结果表明:400℃前,气体析出量较少,全程共析出气体143.6 L,残渣热解气平均产率为0.2393 L/g,析出速率呈"两段式"分布,500~550℃和700~750℃出现两个极值,分别为1.86、1.89 L/min。气体组成中H2含量较高,450~900℃平均体积分数高达65%,分别在500℃出现极大值66.4%和800℃出现最大值70.2%;H2析出特点与气体产率相似,呈"两段式"分布。CH4在600℃出现最高值23.8%,C m H n在500℃出现最高值7.7%,CO在900℃出现极大值9.0%,CO2在残渣热解气中含量较少,分别在500℃出现极大值1.15%和800℃出现极大值1.24%。  相似文献   

10.
采用2t/d外热内旋式移动床热解试验装置,通过控制反应器物料热解区及粉尘沉降气室区的温度,研究了内旋式移动床工艺温度分布对13mm以下神木煤热解产物产率及性质的影响规律。结果表明:物料热解温度控制为650℃和700℃时,煤料均实现了较好热解,半焦挥发分Vdaf降低至10.36%~11.95%;相同物料热解温度,提高粉尘沉降气室温度后,辐射传热作用增强,半焦和焦油产率降低,煤气产率升高;在物料热解温度700℃,粉尘沉降气室温度500℃时,焦油收率Tard最高,为7.44%;物料热解温度为650℃,焦油模拟蒸馏360℃以下馏分含量为63.3%~72.0%,物料热解温度700℃时为67.5%~72.2%;相同物料热解温度,提高粉尘沉降气室温度后,焦油中轻油组分减少,洗油和沥青质含量增加,煤气中氢气含量增加;粉尘沉降气室温度达到550℃时,挥发物二次反应作用明显强于450℃和500℃;各工艺条件下,焦油中喹啉不溶物含量均低于1%,最低为0.51%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号