首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
采用树脂结合剂金刚石砂轮对二维正交编织结构C/SiC复合材料进行了平面磨削加工实验。通过对磨削加工表面形貌、磨削表面中碳纤维区域的粗糙度、磨削亚表面形貌的分析与测量,对C/SiC复合材料磨削表面/亚表面损伤进行了研究。结果表明:磨削表面中碳纤维损伤形式以阶梯状脆性断裂为主。对于编织方向平行于进给速度方向的纤维区域,脆性断裂尺寸、表面粗糙度受工艺参数影响较小;而对于编织方向垂直于进给速度方向的纤维区域,脆性断裂尺寸、表面粗糙度随进给速度增大无明显变化,但随磨削深度增大而明显增大。碳纤维区域亚表面损伤形式主要为阶梯状脆性断裂,而SiC区域亚表面损伤形式主要为脆性断裂及微裂纹,且损伤程度在实验参数范围内无明显差异。  相似文献   

2.
金刚石砂轮磨削铁氧体的表面粗糙度与形貌分析   总被引:1,自引:1,他引:0  
本文研究了树脂结合剂金刚石砂轮磨削铁氧体材料时,磨削深度、工件进给速度对磨削表面粗糙度和材料去除方式的影响规律,以此探索提高铁氧体磨削表面质量的有效途径。采用单因素法设计试验方案对铁氧体进行磨削,测量表面粗糙度数据并对其进行方差分析,对铁氧体磨削表面形貌进行观察。结果表明:随着磨削深度、工件进给速度的增加,表面粗糙度值升高,同时表面塑性痕迹减少,脆性断裂痕迹增加,且磨削深度对表面粗糙度的影响要比工件进给速度的更显著,因此,制定磨削工艺时,考虑到粗磨为了提高效率,降低表面损伤,优化得到磨削工艺为磨削深度5μm,工件进给速度10 m/min;精磨为了获得较低的表面粗糙度,采用磨削深度5μm、工件进给速度为5 m/min,可以提高磨削表面延展性。  相似文献   

3.
为了实现粗磨粒金刚石砂轮延性域磨削加工SiC陶瓷材料,采用碟轮对粒径为297~420μm的粗磨粒金刚石砂轮进行了精密修整。然后,使用经过修整好的粗磨粒金刚石砂轮对SiC陶瓷进行磨削加工。在此基础上,对不同的砂轮线速度、工件进给速度、磨削切深对SiC陶瓷表面粗糙度和表面形貌的影响进行了研究。试验结果表明:经过精密修整的粗磨粒金刚石砂轮是能够实现SiC陶瓷材料的延性域磨削的,表面粗糙度值Ra达到0.151μm;随着砂轮线速度增大、工件进给速度和磨削切深减小,SiC陶瓷表面的脆性断裂减小,塑性去除增加。  相似文献   

4.
本文提出了用普通磨料开槽砂轮间断磨与砂页轮磨削陶瓷材料两种加工方案,试验研究了工艺参数对表面粗糙度的影响。结果表明,这两种方法磨削工程陶瓷是完全可行的,在一定的条件下可代替昂贵的金刚石砂轮粗磨与普通砂轮精磨工艺。  相似文献   

5.
精密磨削Invar36合金时的磨料选择   总被引:1,自引:0,他引:1  
本文对白刚玉、铬刚玉和绿色碳化硅三种磨料砂轮磨削Invar36合金时的磨削力、磨削温度、表面粗糙度和磨削比进行了对比分析。结果表明:白刚玉砂轮对Invar36合金的磨削比最高,磨削表面粗糙度较好,但是磨削温度和磨削力也比较高,适用于Invar36合金的粗磨;铬刚玉砂轮磨削时的磨削力最小,磨削温度最低,但是磨削比也比较低,因此适用于易变形零件的精密磨削。  相似文献   

6.
介绍了金刚石刀具的发展和技术特点,设计了一种天然金刚石刀具前刀面表面粗糙度修磨控制方法,并通过工艺实验完成了对金刚石刀具的修磨。结果表明:验证了(100)面的金刚石的难磨方向,沿此方向加工后金刚石的表面粗糙度值较低、磨削热较多;易磨方向表面粗糙度较差、磨削热较少。优化修磨角度修磨后,金刚石刀具前刀面表面粗糙度Ra值可达0.3 nm,将其应用在超精密切削中效果良好。   相似文献   

7.
为了改善磨削强化层的表面质量,将微量润滑(简称MQL)应用于磨削强化工艺。采用MQL技术对40Cr钢进行磨削强化试验,研究了润滑冷却工艺,如磨削液供给方式、MQL喷射流量、空气压力等对磨削强化层深度、表面显微硬度和表面粗糙度等的影响。结果表明:在湿磨条件下,工件表面没有产生强化层;在MQL磨削条件下,获得的强化层深度略低于干磨,但表面显微硬度较干磨有所提高,且MQL下工件表面的粗糙度低于干磨;在MQL磨削强化中,增加MQL喷射流量和空气压力均有利于提高强化层的表面硬度和降低表面粗糙度。因此,MQL磨削强化能提高工件表面的质量,改善零部件的使用性能。  相似文献   

8.
对压磨板式砂带磨削大理石进行模拟研究,建立了砂带形貌、工作台运动等几何模型;基于单颗粒金刚石切削大理石实验,模拟了针对脆性材料脆性断裂特点的工件磨削表面形貌,包括粗糙度值及轮廓.砂带形貌模型将磨粒切削部分视为锥体,包括砂带基体、磨粒形状、大小、数目及分布;磨削运动几何模型包括工作台静止、转动、往复移动、同时转动移动模型;脆性断裂磨削表面形貌模型是由若干被放大了锥顶角的磨粒沟槽交错组合而成.对比实验采用粒度为P40的SiC砂带在压磨板式平面砂带磨床上进行.模拟的表面粗糙度数值和表面轮廓与实验结果的一致性较好.  相似文献   

9.
针对SiCp/Al逐层磨削两相三维重构需要精密高效端磨的问题,基于单颗磨粒磨削SiCp/Al的磨削力,在考虑切屑变形力、摩擦力、SiC颗粒断裂破碎力的基础上,建立SiCp/Al的端磨磨削力解析模型,结合试验研究切削速度、工件进给速度和轴向磨削深度等参数对加工表面粗糙度的影响规律,并探讨SiCp/Al金相表面快速磨削的加工工艺。结果表明:构建的端磨磨削力解析模型与试验的法向磨削力Fn的总体平均误差为12.98%,切向磨削力Ft的总体平均误差为3.49%;表面粗糙度随切削速度增大而减小,随进给速度和轴向磨削深度的增大而增大;用磨料颗粒基本尺寸为13.0μm的磨具,经过6次磨抛获得良好金相表面,所需磨削加工时间为600 s,可实现SiCp/Al金相表面的快速磨削。  相似文献   

10.
陆胜  罗泽举  刘锬 《机床与液压》2008,36(5):325-327
研究了一种模糊神经网络轧辊磨表面粗糙度智能预测及控制的方法,轧辊磨削精度和表面质量指磨削过程中的加工精度、表面粗糙度和物理机械性能,而表面粗糙度是其中最主要的一个因素.提出的基于模糊神经网络的轧辊磨表面粗糙度智能预测方法对于在轧辊磨削工艺中研究基于模糊神经网络的表面粗糙度预测,对于如何在加工过程中辨识表面粗糙度及时作出砂轮动作的调整,保证轧辊磨削质量有重要意义.同时由于可以实现砂轮表面粗糙度的在线控制与调整,提高了轧辊磨削的生产率.  相似文献   

11.
为解决粗磨粒金刚石砂轮磨块的修整问题,使用W-Mo-Cr合金材料作为修整工具对磨粒粒度尺寸为297~420μm的金刚石砂轮磨块进行修整,修整前后分别测量砂轮表面磨粒的等高性和磨粒的微观形貌,并且分别用修整前后的砂轮磨块进行WC硬质合金的磨削试验。结果表明:W-Mo-Cr合金材料对金刚石砂轮修整效率高,修整后砂轮表面磨粒的等高性提升了60%左右。利用修整后的金刚石砂轮磨削WC硬质合金,工件表面质量得到很大的改善,表面粗糙度达到Ra0.149μm。   相似文献   

12.
加工平板玻璃时金刚石砂轮的选择   总被引:1,自引:0,他引:1  
平板玻璃的切割、磨边、钻孔需要选用不同的金刚石砂轮。MDA金刚石用于制做金属结合剂砂轮,切削锋利,不会产生崩边。用MDAS制做的砂轮寿命长,工作层棱边保持性好,适于磨C形边和光学镜面磨削。MDA100强度最高,推荐用于高性能磨削。SDA粒度较粗,适于制做锯片。以下品种强度逐渐增高:SDA,SDA~+。,  相似文献   

13.
采用超细树脂金刚石砂轮直接磨削及手工研磨2种方式,对锆刚玉(ZA)、微晶刚玉(SG)、棕刚玉(A)和黑刚玉(BA)4种刚玉类磨料试样制样,通过对其表面粗糙度、显微硬度及表面形貌的对比分析,研究了2种制样方式的质量和效率,并优化了4种刚玉类磨料试样直接磨削制样的工艺参数。结果表明:直接磨削的刚玉类磨料试样表面粗糙度Ra、Rz及显微硬度与手工研磨制样的基本一致,但前者的制样效率比后者高至少2倍;ZA、SG和A磨料直接选用粗磨、精磨工序即可满足显微硬度测试要求,而BA磨料则在粗磨、精磨工序基础上,再增加光磨2次工序,也可达到显微硬度测试要求。   相似文献   

14.
本文研究了菱苦土结合剂刀剪刃口磨专用砂轮对不锈钢剪刀刃口的磨削性能。实验证明,菱苦土砂轮自锐性强,磨削锋利,抗不锈钢磨屑粘附性好;磨削深度大,温度低,可集不锈钢剪刀刃口磨削的粗磨、水磨、精磨_1、精磨_2四道工序的加工于一次完成。磨削效率提高了四倍,且产品质量也有很大改善。  相似文献   

15.
钛基复合材料由于存在增强相,故为典型的难加工材料。针对(TiC+TiB)/TC4钛基复合材料内孔开展了电解铣磨精加工试验,结果表明:在电解铣磨精加工0.2 mm后,孔侧壁表面能观察到明显的金属光泽和磨削痕迹,侧壁面的表面粗糙度由Ra14.851 5μm降低至孔口区域Ra0.441 3μm、孔中间区域Ra0.617 6μm。  相似文献   

16.
采用游离磨料加工一种典型的枫叶红花岗石,并对其不同区域经粗磨、精磨、抛光后的表面粗糙度、光泽度和表面形貌进行了对比研究。结果表明,经过8 h抛光后,枫叶红光泽度达到89,且石英区较长石区更容易得到好的表面加工质量,抛光后的表面粗糙度值分别为0.05μm和0.14μm。  相似文献   

17.
利用固结式微复制金刚石研磨片(Trizact Diamond Tile,TDT)对不同玻璃进行减薄研磨,确定不同粒度金刚石TDT的磨削去除率;研究了研磨后的玻璃加工质量,测量了玻璃表面粗糙度及玻璃亚表面损伤层的状态。同时用9μm粒度碳化硅浆料做对比研磨试验。结果表明,同样粒度的金刚石TDT与传统的碳化硅浆料研磨相比可以得到更高的磨削去除率,减少玻璃亚表面损伤层,降低粗糙度。对于康宁玻璃,9μm粒度的TDT可以达到95μm/min的磨削去除率,是同粒度碳化硅浆料研磨的2倍多;Ra可以达到0.37μm,明显好于碳化硅浆料研磨;亚表面损伤也减轻很多。采用2μm粒度的TDT研磨后可获得Ra0.09μm、接近透明的表面。  相似文献   

18.
《电焊机》2015,(8)
利用粗糙度仪和X射线衍射仪对转向架构架人工打磨、粗磨和精磨三种状态的焊缝接头进行了粗糙度及残余应力测试和分析。结果表明:三种打磨状态下,人工打磨粗糙度最大,精磨粗糙度最小。表面粗糙度越小,构件抗疲劳性能越好。人工打磨焊缝接头表面残余应力均为压应力,柔性砂带打磨和无齿盘精磨焊缝接头表面垂直于磨削方向的应力基本上为压应力,而平行于磨削方向的应力基本上为拉应力。  相似文献   

19.
本文用树脂结合剂金刚石砂轮对钒酸钇晶体进行了平面磨削实验,研究了砂轮线速度、工件进给速度和磨削深度对磨削力和磨削表面粗糙度的影响。结果表明:磨削力和磨削表面粗糙度都是随着砂轮线速度的增加而减小,随进给速度和磨削深度的增加而增加,其中磨削深度对磨削力影响最大,砂轮线速度对磨削表面粗糙度影响最大。钒酸钇晶体的磨削表面主要由断裂区域和光滑区域组成,当砂轮线速度为30m/s时,磨削表面存在宽度约100μm的裂痕,而随着砂轮线速度的上升,裂痕宽度降低到50μm以下,同时光滑区域所占的比例增加,这可能与发生塑性变形的机率增大有关。  相似文献   

20.
金刚石滚轮修整若干问题的研究(被评为优秀论文) 过去对金刚石滚轮修整的研究仅限于被修砂轮的有效粗糙度,磨削力和被磨工件表面粗  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号