首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermodynamic analysis of an adsorption-based desalination cycle   总被引:1,自引:0,他引:1  
Adsorption-based desalination (AD) is attracting increasing attention because of its ability to co-generate double-distilled fresh water and cooling. In this paper, a thermodynamic model has been developed in order to study the factors that influence the fresh water production rate (FWPR) and energy consumption of an adsorption-based desalination system. Water adsorption on the silica gel adsorbent is modelled using a Langmuir isotherm and the factors studied are the silica gel adsorption equilibrium constant and the temperatures of the hot and cooling water which supply and extract heat from the silica gel respectively.  相似文献   

2.
崔婉莹  艾恒雨  张世豪  魏金枝 《化工进展》2020,39(10):4210-4226
去除废水中过量的磷可以减缓水体富营养化。吸附除磷因具有能耗低、容量大、污染少等优点而备受关注,改性吸附剂则可在此基础上提高除磷的靶向性,拓宽操作条件,增大吸附容量。本文分析了改性硅酸盐类、改性金属氧化物类、改性固体废弃物类和聚合物类4类除磷吸附剂的改性方法和吸附性能。硅酸盐类吸附材料以及固体废弃物类材料除磷效果略差,但因来源丰富、价格低廉而具有极大的吸引力。聚合物类吸附剂具有高吸附容量、高选择性,但价格昂贵。金属(氢)氧化物具有出色的磷酸盐吸附性能,且选择性好、吸附速度快,这些化合物已被掺入到沸石、介孔二氧化硅和生物炭等材料中,进一步增强其吸附性能,并在工程材料应用中取得重大突破,主要包括磁性吸附剂和颗粒吸附剂。4类吸附剂的作用机理可归纳为两种:一种是吸附剂上的金属与磷酸盐离子发生配位反应,形成沉淀;另一种是酸性条件下吸附剂上的羟基质子化,使羟基带正电,质子化的羟基通过静电吸引使磷得以去除。通过对不同类别吸附剂的吸附特性进行对比分析,提出将高分子技术运用到吸附剂制备过程中,开发同时具有较强解吸能力的改性吸附剂将成为除磷吸附剂研究的新热点。  相似文献   

3.
Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.  相似文献   

4.
海水淡化是从丰富的海水资源中提取清洁淡水的技术,是解决淡水资源短缺的重要途径。传统的海水淡化技术在实际应用中已经暴露出高成本、高能耗和低效率等缺点,因此开发海水淡化新兴技术及材料成为研究重点。二硫化钼(MoS2)是典型层状过渡金属硫化物,因其化学稳定、吸光能力优异等优点,在海水淡化领域具有极大的应用前景。作为一种高效环保的海水淡化材料,MoS2及其复合材料在改善传统脱盐工艺和发展新兴脱盐技术中已得到广泛研究。本文主要论述和分析MoS2基材料在电容去离子、膜脱盐及太阳能脱盐等海水淡化应用中的研究进展以及在工业化应用中面临的挑战,并展望其今后在脱盐领域的发展方向。  相似文献   

5.
硅基吸附剂处理含镉废水的研究进展   总被引:1,自引:0,他引:1  
硅基材料具有高比表面积、多介孔孔道及良好的热稳定性,将其作为吸附剂能够解决许多环境保护问题,因此近年来受到人们的广泛关注。本文主要综述了硅基材料对废水中镉离子吸附的研究进展,对比分析了有机物、无机物、聚合物等不同改性硅材料对溶液中镉离子的去除能力及吸附机理,并通过吸附等温线与动力学模型比较了各类吸附剂的吸附容量及吸附过程。分析表明,材料表面亲水性及官能团的增加有利于去除水体中的镉离子,指出制备高选择性、高吸附量的材料以及提高可回收性将是硅基材料改性修饰的研究热点。此外,提出了一些工业副产品及生物吸附剂对镉离子同样有良好的吸附能力,制备以工农业废弃物为原料的新型硅材料也将成为硅基吸附剂的一个主要研究方向。  相似文献   

6.
Magnetically responsive porous materials possess unique properties in adsorption processes such as magneticinduced separation and heat generation in alternating magnetic fields, which greatly facilitates recycling procedures, favors long-term operation, and improves desorption rate, making conventional adsorption processes highly efficient. With increasing interest in magnetic adsorbents, great progress has been made in designing and understanding of magnetically responsive porous materials varying from monoliths to nanoscale particles used for adsorption including oil uptake, removal of hazardous substances from water, deep desulfurization of fuels, and CO_2 capture in the past few years. Therefore, a review summarizing the advanced strategies of synthesizing these magnetically responsive adsorbents and the utilization of their magnetism in practical applications is highly desired. In this review, we give a comprehensive overview of this emerging field, highlighting the strategies of exquisitely incorporating magnetism to porous materials and subtly exploiting their magnetic responsiveness. Further innovations for fabricating or utilizing magnetic adsorbents are expected to be fueled. The potential opportunities and challenges are also discussed.  相似文献   

7.
Nanocomposite materials containing graphene oxide have attracted tremendous interest as catalysts and adsorbents for water purification. In this study, mesoporous titanosilicate/reduced graphene oxide composite materials with different Ti contents were employed as adsorbents for removing bisphenol A (BPA) from water systems. The adsorptive interaction between BPA and adsorption sites on the composite materials was investigated by Fourier transform infrared (FT-IR) and Raman spectroscopy. Adsorption capacities of BPA at equilibrium, q e (mg/g), decreased with increasing Ti contents, proportional to the surface area of the composite materials. FT-IR observations for fresh and spent adsorbents indicated that BPA adsorbed onto the composite materials by the electrostatic interaction between OH functional groups contained in BPA and on the adsorbents. The electrostatic adsorption sites on the adsorbents were categorized into three hydroxyl groups: Si-OH, Ti-OH, and graphene-OH. In Raman spectra, the intensity ratios of D to G band were decreased after the adsorption of BPA, implying adsorptive interaction of benzene rings of BPA with the sp2 hybrid structure of the reduced graphene oxide.  相似文献   

8.
综述了近年来新型纳米吸附剂静态吸附脱除燃料油中二苯并噻吩(DBT)的作用机理及最新研究进展。重点分析了金属骨架材料(MOFs)、分子印迹聚合物(MIPs)、石墨烯基材料、活性炭基材料(AC)、介孔微孔材料等不同吸附剂的研究现状,从脱硫机理角度探讨不同改性方法对吸附脱硫效果的影响。通过比较这些吸附脱硫材料的优缺点,展望未来吸附脱硫材料的发展趋势和前景,为开发更优良的吸附剂用于吸附脱除DBT提供一些研究思路。文章指出吸附脱除燃料油中的DBT目前的主要问题是吸附剂的重复利用、与燃料油接触容易产生污染和吸附剂与燃料油分离过程中造成的损耗,这些短板也是吸附脱硫法大规模工业应用的主要障碍,因此吸附材料的选择、改性方法以及机理研究是吸附脱除DBT的主要研究方向。  相似文献   

9.
过量的磷流入水体易导致水体富营养化等环境问题,吸附法由于操作方便、经济高效等特点被广泛应用于水体磷酸盐的去除。有序多孔材料具有孔道规则,比表面积大,孔容大等特点,其作为载体可有效提高活性物种的分散性,从而提高吸附剂吸附磷酸盐的效率。综述了基于不同有序多孔材料的吸附剂应用于水体磷酸盐去除的进展,主要包括有序多孔碳材料、有序多孔硅材料和金属有机框架。讨论了基于有序多孔材料吸附剂的磷酸盐吸附性能、主要吸附机理、影响因素及回收利用。总结了基于有序多孔材料吸附剂吸附磷酸盐存在的问题,展望了其未来研究方向及应用前景。  相似文献   

10.
过量的磷流入水体易导致水体富营养化等环境问题。吸附法由于操作方便、经济高效等特点被广泛应用于水体磷酸盐的去除。有序多孔材料具有孔道规则,比表面积大,孔容大等特点,其作为载体可有效提高活性物种的分散性,从而提高吸附剂去除磷酸盐的效率。该文综述了基于不同有序多孔材料合成的吸附剂应用于水体磷酸盐去除的进展,主要包括有序多孔碳材料、有序多孔硅材料和金属有机框架。讨论了基于有序多孔材料吸附剂的磷酸盐吸附性能、主要吸附机制、影响因素及回收利用等。总结了基于有序多孔材料吸附剂吸附磷酸盐存在的问题,展望了其未来研究方向及应用前景。  相似文献   

11.
离子印迹聚合物吸附材料对模板离子具有强识别能力,对其可实现高选择吸附,因而离子印迹技术常用于制备高选择性吸附材料。但传统方法制备的离子印迹吸附材料,因识别位点容易被包埋导致其吸附容量小、吸附-脱附速率低,而表面离子印迹技术则是采用模板离子和聚合单体直接在载体表面或附近区域构筑选择性识别位点,所有活性位点均暴露,从而有效地解决了上述问题。本文从技术原理与合成原料、制备工艺方法以及载体材料类型等方面对表面印迹聚合物吸附材料近期研究进展情况进行了概述。针对相关研究现状,从载体材料、功能单体、目标离子等角度分析和讨论了表面离子印迹聚合物吸附材料当前发展中的不足及其所面临的挑战,并对表面离子印迹技术发展趋势和前景进行了展望。  相似文献   

12.
The worldwide need for fresh water requires more and more plants for the treatment of non-conventional water sources. During the last decades, seawater has become an important source of fresh water in many arid regions. The traditional desalination processes [reverse osmosis (RO), multi stage flash (MSF), multi effect distillation (MED), electrodialysis (ED)] have evoluated to reliable and established processes; current research focuses on process improvements in view of a lower cost and a more environmentally friendly operation. This paper provides an overview of recent process improvements in seawater desalination using RO, MSF, MED and ED. Important topics that are discussed include the use of alternative energy sources (wind energy, solar energy, nuclear energy) for RO or distillation processes, and the impact of the different desalination process on the environment; the implementation of hybrid processes in seawater desalination; pretreatment of desalination plants by pressure driven membrane processes (microfiltration, ultrafiltration and nanofiltration) compared to chemical pretreatment; new materials to prevent corrosion in distillation processes; and the prevention of fouling in reverse osmosis units. These improvements contribute to the cost effectiveness of the desalination process, and ensure a sustainable production of drinking water on long terms in regions with limited reserves of fresh water.  相似文献   

13.
田追  张震  卢嫚  杨斌  杨金辉  周书葵  魏柏  李聪 《化工进展》2022,41(6):3051-3062
半导体、稀土开采等行业所排放的氟废水所引发氟中毒现象备受关注。吸附法是去除废水中氟离子的有效方法之一,但传统吸附剂存在吸附容量低、选择性差等缺点,亟需研发具有高吸附容量、可再生且无二次污染的吸附材料。本文归纳了一些新型吸附材料,如高分子材料吸附剂、生物炭、层状双氢氧化物、工业废弃物、纳米材料及其改性材料在含氟废水中的研究应用;总结了这些改性材料的制备过程,介绍了这些材料吸附除氟的能力,分析了新型吸附材料吸附除氟的机理以及共存离子干扰、pH适用范围等影响因素,并指出了材料制备存在的问题,提出了制备对氟离子具有高选择性能的改性吸附材料的发展方向和材料循环利用所需解决的重要问题。  相似文献   

14.
吸附脱硫技术具有操作条件温和、节能、不改变燃油品质和成本低等特点而备受关注。针对噻吩类难脱除硫化物的深度脱除和转化问题,综述了近年来应用多孔吸附材料选择性吸附超深度脱除燃油中噻吩类硫化物的作用机理及最新研究进展。重点分析了分子筛、金属有机骨架、多孔炭材料、复合材料等不同吸附剂的研究现状,并探讨了各种吸附材料的吸附机理、改性方式和优缺点。本文指出分子筛因优异的热稳定性、高比表面积、均一的孔道结构、低成本和易于工业化等特点,是目前最具优势的吸附剂材料。未来研究应着重阐明吸附机理、提高合成便捷性、脱硫性能以及再生能力,更全面系统的研究将为开发具有理想选择性和再生能力的高效吸附剂奠定基础。  相似文献   

15.
沸石分子筛用于VOCs吸附脱除的应用研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
挥发性有机化合物(volatile organic compounds,VOCs)作为空气中有机污染物的主要成分,对环境与人类健康造成了严重的危害。吸附法可有效富集低浓度VOCs气体,成本低、易操作,是末端治理去除VOCs的主要技术。沸石分子筛具有高度有序、孔径可调的微孔孔道,可实现VOCs分子的选择性吸附,且热稳定性极佳,易于脱附再生,是一种优良的VOCs气体吸附剂。本文分别从沸石分子筛的结构性质、复合型分子筛吸附剂以及整体式分子筛吸附剂三方面详细介绍了沸石分子筛用于VOCs吸附脱除的研究进展。结果表明,变换骨架拓扑结构以及补偿阳离子类型,可实现对VOCs分子进行选择性吸附;提高结构疏水性可有效降低高湿度条件下水分子对VOCs的竞争吸附,增强分子筛吸附剂的环境适应性;通过孔道多级化或与其他介/大孔构建复合型吸附剂,可提高分子筛吸附剂的比表面积和孔容,增大对VOCs的吸附容量;沸石分子筛可构建为整体式吸附剂,相较于颗粒型吸附剂,其机械强度更高,应用性更强。文章还指出,作为整体式分子筛吸附剂的典型代表,分子筛转轮吸附技术在高通量、高压降等吸附工况条件下均表现出极佳的VOCs吸附脱除效率,已广泛应用于工业排放VOCs的有效治理。  相似文献   

16.
BACKGROUND: There are few reports about adsorbents for the effective removal of large‐molecule pesticides such as DDT (1,1,1‐trichloro‐2,2′ bis(p‐chlorophenyl)ethane). Some mesoporous silica materials and their modified derivatives might serve as good adsorbents for these large organic molecules because of their large pore diameter and special pore structures. In this work, the adsorption processes of DDT in aqueous solutions were investigated using different mesoporous silica materials, including HMS, MCM‐41, SBA‐15 and MCM‐48. RESULTS: All these materials exhibit efficient DDT removal, and the adsorption is a rapid process with over 50% of DDT removed within approximately 2 h. The efficiency of DDT removal is influenced by the adsorbent characteristics, such as pore volume, pore diameter, connectivity between pore channels and surface OH groups. The influences of water/acetone ratio and initial DDT concentration in solution were also explored. It was found that with enhancing DDT solubility, the addition of acetone in the reaction solution had no evident impact on DDT adsorption efficiency. Increasing the initial concentration of DDT resulted in a decrease of DDT adsorption efficiency. The adsorption kinetics of DDT on mesoporous silica material is shown to be pseudo‐second‐order. After thermal treatment at a relatively low temperature of 450 °C, the adsorbed DDT was completely decomposed and the adsorbents, except MCM‐41, were regenerated well. CONCLUSION: The results demonstrate the potential of a simple and efficient new approach for the removal of OCPs (organochlorine pesticides), especially large OCP molecules from surface water or groundwater. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
The common methods of desalination salt water for production of fresh water by distillation, reverse osmosis and electrodialysis are intensive energy techniques. However, in remote arid areas, the desalination needs not exceed a few cubic meters per day. This decentralised demand favours local water production by developing other desalination processes, especially those using renewable or recovered energy (solar, geothermal, etc.). Solar desalination process is one of these methods used to resolve the scarcity of fresh water. Several reviews have been published by different authors. Small production systems as solar stills can be used if fresh water demand is low and the land is available at low cost. To supply the population of remote arid lands of South Algeria with drinkable water, solar distillation of brackish waters is recommended. It satisfies some of theses demands. Solar stills are used to produce fresh water from brackish water by directly utilising sunshine. These stills represent the best technical solution to supply remote villages or settlements in South Algeria with fresh water without depending on high-tech and skills. The production capacity indicates a possible daily production of far more than 15 l/m2d. Therefore, the still has a place in the upper range of known comparable products with regards to production output. This depends on the material used and the price of the solar stills and their accessories. The best working temperature solves most problems. Small, modular high-performance stills with features like the possibility of decentralised use, less maintenance and robust construction can help to reduce fresh water scarcity. The recent development of stills based on new concepts and heat recovery has been successful. The technical optimization is still in process today, it aims to improvement of the efficiency of these distillers. In our research work, a plant for brackish water distillation by directly sunshine and heat recovery was constructed and investigated experimentally and theoretically in South Algeria. This study aims the improvement of the performance of this solar distillation plant, conducted under the actual insulation, for brackish underground geothermal water desalination.  相似文献   

18.
二甲苯是泄漏事故频率较高的一种典型危险化学品。在化学品泄漏响应中,吸附材料可以作为一种资源用于水中化学品的回收。为了选择一种优秀的吸附材料清除水面泄漏二甲苯,本文在介绍5类吸附剂(矿物类、生物质、纳米材料、有机合成化合物和超疏水材料)的结构特点、吸附原理、吸附性能基础上,评述了各类吸附剂应用于泄漏事故水域二甲苯分离去除的优缺点,介绍了各类材料吸附分离二甲苯的最新进展。分析表明,超疏水三维多孔材料(超疏水海绵、超疏水纤维等)和超疏水网膜材料由于具有较高的亲油疏水性和二甲苯吸附容量,且机械强度大、耐磨性强、再生方法简单,使其适于作为大面积二甲苯污染水域的分离材料。本文对改进超疏水材料应用效果提出了建议。  相似文献   

19.
The scarcity of water, mainly in arid and semiarid areas of the world is exerting exceptional pressure on sources and necessitates offering satisfactory water for human and different uses. Water recycle/reuse has confirmed to be successful and promising in reliable water delivery. For that reason, attention is being paid to the effective treatment of alternative resources of water (other than fresh water) which includes seawater, storm water, wastewater (e.g., dealt with sewage water), and industrial wastewater. Carbon nanotubes (CNTs) are called the technology of 21st century. Nowadays CNTs have been widely used for adsorption of heavy metals from water/ wastewater due to their unique physical and chemical properties. This paper reviews some recent progress (from 2013 to 2018) in the application of CNTs for the adsorption of heavy metals in order to remove toxic pollutants from contaminated water. CNTs are expected to be a promising adsorbent in the future because of its high adsorption potential in comparison to many traditional adsorbents.  相似文献   

20.
Techniques for the production of composite oxygen selective adsorbents are disclosed. These adsorbents are comprised of a carbon molecular sieve (CMS) which is kinetically selective for the adsorption of oxygen over nitrogen and an agent for the sorption of water such as LiCl or SiO2. The adsorption properties of the composite adsorbents and results obtained from pressure swing adsorption (PSA) process testing are presented. The composite adsorbents improve the nitrogen PSA process performance (recovery and productivity) over the use of conventional desiccants which do not exhibit oxygen selectivity. Using a standard nitrogen PSA process cycle, replacement of conventional inorganic desiccants like alumina with the current CMS-based desiccants improved air recovery 2 to 4 percentage points and increased nitrogen productivity 15 to 20% at 70°F and a nitrogen purity of 99.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号