首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis (CHFS) system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porons media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40%and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions.  相似文献   

2.
3.
郝国永  张莹莹  高磊  于宵航  吴亮 《当代化工》2014,(12):2572-2575
总结了近年来国内外新型管壳式换热器的管束结构发展进展,从管程、壳程两个方面介绍了管壳式换热器管束结构改进及强化传热机理,并且介绍了几种新型结构在实际生产中的成功应用及其强化传热特点。最后为换热器管束结构发展提出建设性意见。  相似文献   

4.
A steady heat transfer problem has been analyzed as a conjugate problem with turbulent flow in a circular tube. The three kinds of thermal boundary conditions considered here are specified as constant temperature, constant heat flux and constant heat transfer coefficient at the outer surface of the wall.

From the results of numerical calculation for Prandtl numbers in the range 0.01 ≤ Pr ≤ 10 and for Reynolds numbers in the range 104Re ≤ 105, it was confirmed that the dimensionless parameter Rc could have significant effects on the heat transfer and the temperature field in the fluid adjacent to the wall.  相似文献   

5.
Shell-side vapour velocities through heat exchangers should be kept low to prevent erosion when moisture or suspended particles present. In this work, simple-to-use equations, which are easier than currently available models and involve a fewer number of fitted parameters, requiring less complicated and shorter computations, are formulated to arrive at an appropriate prediction of maximum shell-side vapour velocities through heat exchangers for wide range of conditions as a function of molecular weight and pressure. The proposed fitted equations accurately estimate the maximum shell-side vapour velocities through heat exchangers for pressures up to 7500 kPa(abs), and molecular weights up to 400. The values calculated here are maximum for reasonable operation. In order to reduce pressure drop, velocities must be well below the maximum values. Estimations are found to be in excellent agreement with the reported data in the literature with average absolute deviation being around 3.9%. The fitted equations developed in this study can be of immense practical value for the engineers and scientists to have a quick check on the maximum shell-side vapour velocities through heat exchangers at wide range of conditions without opting for any experimental measurements. In particular, chemical and process engineers would find the simple equations to be user-friendly with transparent calculations involving no complex expressions.  相似文献   

6.
The efficacy of nanofluids as coolants is investigated in the present study. For the nanofluids tested, systematic measurements confirmed that the thermophysical properties of the base fluid are considerably affected by the nanoparticle addition. A typical nanofluid, namely a 4% CuO suspension in water, is selected next and its performance in a commercial herringbone-type PHE is experimentally studied. The new experimental data confirmed that besides the physical properties, the type of flow inside the heat exchanging equipment also affects the efficacy of a nanofluid as coolant. The fluid viscosity seems also to be a crucial factor for the heat exchanger performance. It is concluded that in industrial heat exchangers, where large volumes of nanofluids are necessary and turbulent flow is usually developed, the substitution of conventional fluids by nanofluids seems inauspicious.  相似文献   

7.
    
  相似文献   

8.
张轮亭  邱丽灿  王臣 《当代化工》2014,(11):2322-2324,2327
管壳式换热器在石油化工领域应用广泛,其强化传热技术的研究受到普遍关注。主要介绍了近年来国内与国外高效节能管壳式换热器强化传热技术研究的进展情况,分别从管侧、壳侧和整体结构改进三方面分析了管壳式换热器的强化传热效果及特点,最后提出了强化传热的发展方向。  相似文献   

9.
为了研究螺旋形扭带阻力与传热特性,选取了不同宽度(6、7和8 mm)的3种扭率(2.0、3.0、4.0)、3种螺距比(1.5、2.0、2.5)的参数组合下共27根螺旋形扭带插入换热管内进行实验.实验结果表明,插入螺旋形扭带后换热管内流动阻力和传热效果都有明显提高.通过对实验数据的多元线性回归分析,建立了相应的阻力系数和努赛尔数关联式.并且由强化传热综合性能评价分析,在实验雷诺数范围内得出强化传热综合性能评价因子φ=1.063~1.587,证明了实验研究的扭带具有强化传热的应用价值.  相似文献   

10.
The Principle of Detailed Balance in a monomolecular reaction system requires a symmetry of the reaction paths and initial compositions. In a closed system, the influence of the initial concentration of species i on the subsequent normalized concentration of species j is exactly the same as the influence of the initial concentration of species j on the subsequent normalized concentration of species i. This reciprocity relation means that each reaction path measured leads to information about other reaction paths, independent of a knowledge of the reaction rate constants.  相似文献   

11.
    
  相似文献   

12.
    
It was demonstrated that fluid recycling could effectively enhance heat transfer rates of heat exchangers, however, related investigations were limited. In the current work, parallel-flow heat exchangers with basic recycles or revised recycles are investigated in the laminar regime. Theoretical models of thermo-hydraulic performances are established. The effects of reflux ratio, capacitance rate ratio, heat transfer area, and recycle length are investigated. The results demonstrate that the dimensionless heat transfer rate rises with the increase of reflux ratio or capacitance rate ratio, or with the decrease of heat transfer area, and the maximum values reach up to 127% and 121% for basic internal and external recycles, respectively. Basic internal recycles generate larger dimensionless heat transfer rates under larger reflux ratios, while basic external recycles perform more reliably over the whole reflux ratio range. Compared with basic recycles, revised recycles (i.e., partial-length recycles) require smaller pumping powers. Thus, partial-length recycles can improve the dimensionless overall performance of full-length recycle heat exchangers, e.g., half-length recycles increase the dimensionless overall performance by 65%. Fluid recycling does not need to change geometrical structures and fluid flow rates, thus it is a competitive approach of thermal augmentation in heat exchangers.  相似文献   

13.
螺旋内槽管内的层流流动与传热的数值模拟   总被引:3,自引:2,他引:3  
应用数值方法对一种螺旋内槽管管内的流体层流流动和传热进行了数值分析。采用数学变量置换把控制方程由原坐标系中的三维动量、能量及连续性方程转化为二维螺旋坐标系下的数值计算模型,并利用现有的二维数值模拟软件进行模拟计算。计算考察了恒壁温、轴向恒热流螺旋内层流充分发展流体的流动与传热随雷诺数的变化,并研究了螺距的影响。  相似文献   

14.
    
Results are presented from a numerical study examining the flow of a viscous, incompressible fluid through a random packing of non‐overlapping spheres at moderate Reynolds numbers, spanning a wide range of flow conditions for porous media. By using a laminar model including inertial terms and assuming rough walls, numerical solutions of the Navier‐Stokes equations in three‐dimensional porous packed beds resulted in dimensionless pressure drops in excellent agreement with those reported in a previous study. This observation suggests that no transition to turbulence could occur in the range of the Reynolds number studied. For flows in the Forchheimer regime, numerical results are presented of the lateral dispersivity of solute continuously injected into a three‐dimensional bounded granular bed at moderate Peclet numbers. In addition to numerical calculations, to describe the concentration profile of solute, an approximate solution for the mass transport equation in a bounded granular bed in a cylindrical coordinates system is proposed. Lateral fluid dispersion coefficients are then calculated by fitting the concentration profiles obtained from numerical and analytical methods. Comparing the present numerical results with data available in the literature, no evidence has been found to support the speculations by others for a transition from laminar to turbulent regimes in porous media at a critical Reynolds number.  相似文献   

15.
横纹槽管束在不同支承结构下的传热及流阻性能试验   总被引:4,自引:0,他引:4  
罗运禄  崔乃瑛 《化工学报》1992,43(6):770-773
<正>横纹槽管是苏联60年代由Mигай和Kaлинин等人开发的双面强化管(图1)。它只有边界层分离流,而无对传热作用不大却使流阻增加较多的螺旋流,故其性能明显优于螺  相似文献   

16.
    
《Ceramics International》2020,46(8):11647-11657
Advances in micro electro mechanical systems (MEMS) necessitate utilizing efficient types of materials which are capable of dissipating high heat transfer rates. Aluminum nitride (AlN) as a member of advanced ceramics family, offers remarkable thermal conductivity which makes it suitable candidate in manufacturing of special and high-tech heat exchangers. The present work aims to investigate the application of a micro-sized heat exchanger made of AlN. According to the performed numerical simulations using Comsol Multiphysics, AlN made heat exchanger showed remarkable heat transfer enhancement of 59%, compared to the Al2O3 made one. Such a considerable improvement can be attributed to the higher thermal conductivity of AlN in comparison with Al2O3. The effectiveness of the heat exchangers were calculated for both AlN and Al2O3 made heat exchangers, and a 26% improvement was observed using aluminum nitride.  相似文献   

17.
付磊  唐克伦  文华斌  王维慧  付伶 《化工进展》2012,31(11):2384-2389
结合化工行业中使用的某型号管壳式换热器的结构图和工艺参数,对换热器的结构进行了合理的简化,利用ANSYS参数化建模方法建立了管壳式换热器的参数化模型。在ANSYS FLUENT14.0数值模拟软件中对换热器的流体流动以及耦合传热进行了数值模拟,得到管程和壳程流体的流速分布、压降情况、温度场变化的细节信息。该工作对于设计传热效率高、流体阻力小的换热器进行了有益探索。  相似文献   

18.
The performance of binary particles mixing and gas-solids contacting,which is considered qualitatively to have a significant influence on the heat transfer in internal heated circulating fluidized beds,is carefully investigated by means of a numerical approach in the newly developed high solids-flux downer lignite pyrolyzer(φ0.1 m × 6.5 m).Since binary particles are used in this system,a reasonably validated 3 D,transient,multi-fluid model,in which three heat transfer modes relating to the convection,conduction and radiation are considered,is adopted to simulate the flow behavior,temperature profiles as well as volatile contents.The simulation results showed that the solids stream impinges the left wall surface initially and turns towards the right wall in the further downward direction and then shrinks during this process resulting in that the solids concentrate a little more at the central region.In the further downward section of the downer,the particle flow disperses near the right wall and develops uniformly.Meanwhile,the coal phase is slowly heated in the downer and it is found that most of the heat absorbed by the coal is from the convection heat transfer mode.To explore the heat transfer mechanism more quantitatively,two indexes(mixing index and contacting index) are proposed,and it is found that the mixing index initially increased fast and later remained at a relatively flat state.For the contact index,it shows a trend with a first rising and then falling,finally rising continuously.Also,it is found that the convection heat transfer is closely correlated to the contacting status of gas-coal which indicates that the improving of the gas-coal contacting efficiency should be an effective way to strengthen the coal particle heating process.  相似文献   

19.
郭崇志  林桥 《化工进展》2011,30(10):2131
针对目前管壳式换热器中微小流路建模和分析的缺失,采用“分段建模,整体综合”的模拟方法成功地开发了小间隙流路A和E的建模技术,建立了既包含主体流路(B、C),也包含微小泄漏流道(A、E)的全流路管壳式换热器流动与传热模型,得到了与实际换热器相适应的几何模型。通过应用CFD软件Fluent进行分段模型的流动与传热研究,对各流道在折流空间中对传热和流动的影响进行了分析讨论。同时,采用整体综合技术,将数值模拟获得的局部流动与传热数据综合整理得到了换热器传热和阻力系数的整体法关联式。并将模拟结果与几种著名的壳程计算方法(Donohue、Kern和Bell-Delaware,流路分析)进行了对比,结果发现数值模拟与Bell-Delaware法和流路分析法的结果吻合良好,最大偏差小于20%。  相似文献   

20.
    
An experimental and numerical simulation study of heat transfer due to a confined impinging circular jet is presented. In this research, a stainless steel foil heated disk was used as the heat transfer surface of a simulated chip, and the thermocouples were mounted symmetrically along the diameter of the foil to measure the temperature distribution on the surface. Driven by a small pump, a circular air jet (1.5 mm and 1 mm in diameter) impinged on the heat‐transfer surface with middle and low Reynolds numbers. The parameters, such as Reynolds number and ratio of height‐to‐diameter, were changed to investigate the radial distribution of the Nusselt number and the characteristics of heat transfer in the stagnation region. Numerical computations were performed by using several different turbulence models. In wall bounded turbulent flows, near‐wall modeling is crucial. Therefore, the turbulence models enhanced wall treatment, such as the RNG κ‐? model, may be superior for modeling impingement flows. The numerical results showed reasonable agreement with the experimental data for local heat transfer coefficient distributions. The impinging jet may be an effective method to solve the cooling problem of high power density electronic packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号